Improved feature selection using a hybrid side-blotched lizard algorithm and genetic algorithm approach

Q2 Computer Science
Amr Abdel-aal, Ibrahim El-Henawy
{"title":"Improved feature selection using a hybrid side-blotched lizard algorithm and genetic algorithm approach","authors":"Amr Abdel-aal, Ibrahim El-Henawy","doi":"10.11591/ijece.v13i5.pp5737-5746","DOIUrl":null,"url":null,"abstract":"Feature selection entails choosing the significant features among a wide collection of original features that are essential for predicting test data using a classifier. Feature selection is commonly used in various applications, such as bioinformatics, data mining, and the analysis of written texts, where the dataset contains tens or hundreds of thousands of features, making it difficult to analyze such a large feature set. Removing irrelevant features improves the predictor performance, making it more accurate and cost-effective. In this research, a novel hybrid technique is presented for feature selection that aims to enhance classification accuracy. A hybrid binary version of side-blotched lizard algorithm (SBLA) with genetic algorithm (GA), namely SBLAGA, which combines the strengths of both algorithms is proposed. We use a sigmoid function to adapt the continuous variables values into a binary one, and evaluate our proposed algorithm on twenty-three standard benchmark datasets. Average classification accuracy, average number of selected features and average fitness value were the evaluation criteria. According to the experimental results, SBLAGA demonstrated superior performance compared to SBLA and GA with regards to these criteria. We further compare SBLAGA with four wrapper feature selection methods that are widely used in the literature, and find it to be more efficient.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5737-5746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

Abstract

Feature selection entails choosing the significant features among a wide collection of original features that are essential for predicting test data using a classifier. Feature selection is commonly used in various applications, such as bioinformatics, data mining, and the analysis of written texts, where the dataset contains tens or hundreds of thousands of features, making it difficult to analyze such a large feature set. Removing irrelevant features improves the predictor performance, making it more accurate and cost-effective. In this research, a novel hybrid technique is presented for feature selection that aims to enhance classification accuracy. A hybrid binary version of side-blotched lizard algorithm (SBLA) with genetic algorithm (GA), namely SBLAGA, which combines the strengths of both algorithms is proposed. We use a sigmoid function to adapt the continuous variables values into a binary one, and evaluate our proposed algorithm on twenty-three standard benchmark datasets. Average classification accuracy, average number of selected features and average fitness value were the evaluation criteria. According to the experimental results, SBLAGA demonstrated superior performance compared to SBLA and GA with regards to these criteria. We further compare SBLAGA with four wrapper feature selection methods that are widely used in the literature, and find it to be more efficient.
采用混合侧斑点蜥蜴算法和遗传算法改进特征选择方法
特征选择需要在广泛的原始特征集合中选择重要的特征,这些特征对于使用分类器预测测试数据至关重要。特征选择通常用于各种应用,例如生物信息学,数据挖掘和书面文本分析,其中数据集包含数万或数十万个特征,使得分析如此大的特征集变得困难。去除不相关的特征可以提高预测器的性能,使其更准确,更具成本效益。本研究提出了一种新的混合特征选择技术,以提高分类精度。提出了一种混合二进制版本的侧面斑点蜥蜴算法(SBLA)和遗传算法(GA),即SBLAGA,它结合了两者的优点。我们使用sigmoid函数将连续变量值调整为二值,并在23个标准基准数据集上对我们提出的算法进行了评估。平均分类准确率、平均选择特征个数和平均适应度值为评价标准。实验结果表明,SBLAGA在这些指标上的性能优于SBLA和GA。我们进一步将SBLAGA与文献中广泛使用的四种包装器特征选择方法进行了比较,发现它的效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信