Low-rate distributed denial of service attacks detection in software defined network-enabled internet of things using machine learning combined with feature importance

Q2 Decision Sciences
Muhammad Abizar, Muhammad Ferry Septian Ihzanor Syahputra, Ahmad Rizky Habibullah, Christian Sri Kusuma Aditya, Fauzi Dwi Setiawan Sumadi
{"title":"Low-rate distributed denial of service attacks detection in software defined network-enabled internet of things using machine learning combined with feature importance","authors":"Muhammad Abizar, Muhammad Ferry Septian Ihzanor Syahputra, Ahmad Rizky Habibullah, Christian Sri Kusuma Aditya, Fauzi Dwi Setiawan Sumadi","doi":"10.11591/ijai.v12.i4.pp1974-1984","DOIUrl":null,"url":null,"abstract":"One of the main challenges in developing the internet of things (IoT) is the existence of availability problems originated from the low-rate distributed denial of service attacks (LRDDoS). The complexity of IoT makes the LRDDoS hard to detect because the attack flow is performed similarly to the regular traffic. Integration of software defined IoT (SDN-Enabled IoT) is considered an alternative solution for overcoming the specified problem through a single detection point using machine learning approaches. The controller has a resource limitation for implementing the classification process. Therefore, this paper extends the usage of Feature Importance to reduce the data complexity during the model generation process and choose an appropriate feature for generating an efficient classification model. The research results show that the Gaussian Naïve Bayes (GNB) produced the most effective outcome. GNB performed better than the other algorithms because the feature reduction only selected the independent feature, which had no relation to the other features.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i4.pp1974-1984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

One of the main challenges in developing the internet of things (IoT) is the existence of availability problems originated from the low-rate distributed denial of service attacks (LRDDoS). The complexity of IoT makes the LRDDoS hard to detect because the attack flow is performed similarly to the regular traffic. Integration of software defined IoT (SDN-Enabled IoT) is considered an alternative solution for overcoming the specified problem through a single detection point using machine learning approaches. The controller has a resource limitation for implementing the classification process. Therefore, this paper extends the usage of Feature Importance to reduce the data complexity during the model generation process and choose an appropriate feature for generating an efficient classification model. The research results show that the Gaussian Naïve Bayes (GNB) produced the most effective outcome. GNB performed better than the other algorithms because the feature reduction only selected the independent feature, which had no relation to the other features.
基于机器学习和特征重要性的软件定义网络物联网低速率分布式拒绝服务攻击检测
低速率分布式拒绝服务攻击(LRDDoS)导致的可用性问题是物联网发展面临的主要挑战之一。物联网的复杂性使得LRDDoS很难被检测到,因为攻击流程与常规流量类似。软件定义物联网(SDN-Enabled IoT)的集成被认为是使用机器学习方法通过单个检测点克服指定问题的替代解决方案。控制器具有实现分类过程的资源限制。因此,本文扩展了特征重要性的使用,以降低模型生成过程中的数据复杂性,并选择合适的特征生成高效的分类模型。研究结果表明,高斯Naïve贝叶斯算法(GNB)产生的结果最为有效。GNB算法的性能优于其他算法,因为特征约简只选择独立的特征,而与其他特征无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信