{"title":"Dyslexia deep clustering using webcam-based eye tracking","authors":"Mohamed Ikermane, A. E. Mouatasim","doi":"10.11591/ijai.v12.i4.pp1892-1900","DOIUrl":null,"url":null,"abstract":"Dyslexia is a neurodevelopmental impairment that causes difficulties in reading and can have significant academic, social, and economic impacts. In Morocco, Dyslexia accounts for 37% of children's school failures. Early detection of dyslexia is crucial to help children reach their academic potential and prevent low self-esteem. To address this issue, a dyslexia screening tool using webcam-based eye tracking was developed for the Arabic language. The tool was tested on a dataset of 61 students from three primary schools in southern Morocco, and the results showed that using Arabic dyslexic-friendly typefaces improved reading performance, particularly for those with low reading performance. Deep clustering was used to reduce the dimensionality of the dataset, and the subjects were gathered using unsupervised k-means based on AutoEncoder output. The three clusters produced showed a significant difference in many dyslexia traits, such as the number and duration of fixations, as well as the saccade period. These findings suggest that webcam-based eye-tracking techniques have the potential to be used as an initial dyslexia diagnosis tool to assess if a child exhibits some of the typical symptoms of dyslexia and whether they should seek a professional full dyslexia diagnosis.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i4.pp1892-1900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Dyslexia is a neurodevelopmental impairment that causes difficulties in reading and can have significant academic, social, and economic impacts. In Morocco, Dyslexia accounts for 37% of children's school failures. Early detection of dyslexia is crucial to help children reach their academic potential and prevent low self-esteem. To address this issue, a dyslexia screening tool using webcam-based eye tracking was developed for the Arabic language. The tool was tested on a dataset of 61 students from three primary schools in southern Morocco, and the results showed that using Arabic dyslexic-friendly typefaces improved reading performance, particularly for those with low reading performance. Deep clustering was used to reduce the dimensionality of the dataset, and the subjects were gathered using unsupervised k-means based on AutoEncoder output. The three clusters produced showed a significant difference in many dyslexia traits, such as the number and duration of fixations, as well as the saccade period. These findings suggest that webcam-based eye-tracking techniques have the potential to be used as an initial dyslexia diagnosis tool to assess if a child exhibits some of the typical symptoms of dyslexia and whether they should seek a professional full dyslexia diagnosis.