COVID-19 digital x-rays forgery classification model using deep learning

Q2 Decision Sciences
Eman I. Abd El-Latif, Nour Eldeen M. Khalifa
{"title":"COVID-19 digital x-rays forgery classification model using deep learning","authors":"Eman I. Abd El-Latif, Nour Eldeen M. Khalifa","doi":"10.11591/ijai.v12.i4.pp1821-1827","DOIUrl":null,"url":null,"abstract":"Nowadays, the internet has become a typical medium for sharing digitalimages through web applications or social media and there was a rise inconcerns about digital image privacy. Image editing software’s have preparedit incredibly simple to make changes to an image's content without leavingany visible evidence for images in general and medical images in particular.In this paper, the COVID-19 digital x-rays forgery classification modelutilizing deep learning will be introduced. The proposed system will be ableto identify and classify image forgery (copy-move and splicing) manipulation.Alexnet, Resnet50, and Googlenet are used in this model for feature extractionand classification, respectively. Images have been tampered with in threeclasses (COVID-19, viral pneumonia, and normal). For the classification of(Forgery or no forgery), the model achieves 0.9472 in testing accuracy. Forthe classification of (Copy-move forgery, splicing forgery, and no forgery),the model achieves 0.8066 in testing accuracy. Moreover, the model achieves0.796 and 0.8382 for 6 classes and 9 classes problems respectively.Performance indicators like Recall, Precision, and F1 Score supported theachieved results and proved that the proposed system is efficient for detectingthe manipulation in images.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i4.pp1821-1827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays, the internet has become a typical medium for sharing digitalimages through web applications or social media and there was a rise inconcerns about digital image privacy. Image editing software’s have preparedit incredibly simple to make changes to an image's content without leavingany visible evidence for images in general and medical images in particular.In this paper, the COVID-19 digital x-rays forgery classification modelutilizing deep learning will be introduced. The proposed system will be ableto identify and classify image forgery (copy-move and splicing) manipulation.Alexnet, Resnet50, and Googlenet are used in this model for feature extractionand classification, respectively. Images have been tampered with in threeclasses (COVID-19, viral pneumonia, and normal). For the classification of(Forgery or no forgery), the model achieves 0.9472 in testing accuracy. Forthe classification of (Copy-move forgery, splicing forgery, and no forgery),the model achieves 0.8066 in testing accuracy. Moreover, the model achieves0.796 and 0.8382 for 6 classes and 9 classes problems respectively.Performance indicators like Recall, Precision, and F1 Score supported theachieved results and proved that the proposed system is efficient for detectingthe manipulation in images.
基于深度学习的COVID-19数字x射线伪造分类模型
如今,互联网已经成为通过网络应用程序或社交媒体分享数字图像的典型媒介,人们对数字图像隐私的关注也在增加。图像编辑软件已经准备好非常简单地对图像内容进行更改,而不会留下任何可见的图像证据,特别是医学图像。本文将介绍利用深度学习的COVID-19数字x射线伪造分类模型。该系统将能够识别和分类图像伪造(复制-移动和拼接)操作。该模型分别使用Alexnet、Resnet50和Googlenet进行特征提取和分类。图像被篡改了三类(COVID-19,病毒性肺炎和正常)。对于(伪造或非伪造)的分类,该模型的测试准确率达到0.9472。对于(复制-移动伪造、拼接伪造和无伪造)的分类,该模型的测试精度达到了0.8066。对于6类和9类问题,模型分别达到0.796和0.8382。召回率、精度和F1分数等性能指标支持了所取得的结果,并证明了所提出的系统对于检测图像中的操纵是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信