Saeid Haghir, Ramtin Haghnazar, Sara Saghafi Moghaddam, Dan Keramat, M. Matini, Katayoon Taghizade
{"title":"BIM based decision-support tool for automating design to fabrication process of freeform lattice space structure","authors":"Saeid Haghir, Ramtin Haghnazar, Sara Saghafi Moghaddam, Dan Keramat, M. Matini, Katayoon Taghizade","doi":"10.1177/09560599211033867","DOIUrl":null,"url":null,"abstract":"Complex freeform surfaces and structures are increasingly designed and used in the product and building industry due to the advances in mathematics and digital design tools. However, there is still a gap between designing freeform surfaces and fabricating them. The process of preparing freeform surfaces’ shop drawings is complicated, time-consuming, and lacks the mutual understanding among the stakeholders. Computational design and Building Information Modeling (BIM) can serve as a mediator agent for the integration of design goals with the geometric logic of constructability. They can also facilitate creating platforms for designing and evaluating freeform structures. This open-ended qualitative research attempts to develop a systematic methodology for automating the design and construction drafting process of freeform lattice space structure. Solving this complex geometric problem aims to benefit the design for construction and manufacturers and shrink the cost and time of the process. The study employs a 3D computer-aided design (CAD) tool and introduces an algorithm that generates a BIM model. The BIM model contains shop drawings and suggests the specifications of the main elements, such as beams, glass panels, and nodes.","PeriodicalId":34964,"journal":{"name":"International Journal of Space Structures","volume":"36 1","pages":"164 - 179"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/09560599211033867","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Space Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09560599211033867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 13
Abstract
Complex freeform surfaces and structures are increasingly designed and used in the product and building industry due to the advances in mathematics and digital design tools. However, there is still a gap between designing freeform surfaces and fabricating them. The process of preparing freeform surfaces’ shop drawings is complicated, time-consuming, and lacks the mutual understanding among the stakeholders. Computational design and Building Information Modeling (BIM) can serve as a mediator agent for the integration of design goals with the geometric logic of constructability. They can also facilitate creating platforms for designing and evaluating freeform structures. This open-ended qualitative research attempts to develop a systematic methodology for automating the design and construction drafting process of freeform lattice space structure. Solving this complex geometric problem aims to benefit the design for construction and manufacturers and shrink the cost and time of the process. The study employs a 3D computer-aided design (CAD) tool and introduces an algorithm that generates a BIM model. The BIM model contains shop drawings and suggests the specifications of the main elements, such as beams, glass panels, and nodes.
期刊介绍:
The aim of the journal is to provide an international forum for the interchange of information on all aspects of analysis, design and construction of space structures. The scope of the journal encompasses structures such as single-, double- and multi-layer grids, barrel vaults, domes, towers, folded plates, radar dishes, tensegrity structures, stressed skin assemblies, foldable structures, pneumatic systems and cable arrangements. No limitation on the type of material is imposed and the scope includes structures constructed in steel, aluminium, timber, concrete, plastics, paperboard and fabric.