Lagrange geometry on tangent manifolds

IF 1 Q1 MATHEMATICS
I. Vaisman
{"title":"Lagrange geometry on tangent manifolds","authors":"I. Vaisman","doi":"10.1155/S0161171203303059","DOIUrl":null,"url":null,"abstract":"Lagrange geometry is the geometry of the tensor field defined by the fiberwise Hessian of a nondegenerate Lagrangian function on the total space of a tangent bundle. Finsler geometry is the geometrically most interesting case of Lagrange geometry. In this paper, we study a generalization which consists of replacing the tangent bundle by a general tangent manifold, and the Lagrangian by a family of compatible, local, Lagrangian functions. We give several examples and find the cohomological obstructions to globalization. Then, we extend the connections used in Finsler and Lagrange geometry, while giving an index-free presentation of these connections.","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/S0161171203303059","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/S0161171203303059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 29

Abstract

Lagrange geometry is the geometry of the tensor field defined by the fiberwise Hessian of a nondegenerate Lagrangian function on the total space of a tangent bundle. Finsler geometry is the geometrically most interesting case of Lagrange geometry. In this paper, we study a generalization which consists of replacing the tangent bundle by a general tangent manifold, and the Lagrangian by a family of compatible, local, Lagrangian functions. We give several examples and find the cohomological obstructions to globalization. Then, we extend the connections used in Finsler and Lagrange geometry, while giving an index-free presentation of these connections.
切线流形上的拉格朗日几何
拉格朗日几何是由非简并拉格朗日函数在切束的总空间上的纤维向黑森量所定义的张量场的几何。芬斯勒几何是拉格朗日几何中最有趣的例子。本文研究了用一般切流形代替切束,用相容的局部拉格朗日函数代替拉格朗日函数的一种推广方法。我们列举了几个例子,找出了全球化的同构障碍。然后,我们扩展了芬斯勒几何和拉格朗日几何中使用的连接,同时给出了这些连接的无索引表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES Mathematics-Mathematics (miscellaneous)
CiteScore
2.30
自引率
8.30%
发文量
60
审稿时长
17 weeks
期刊介绍: The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信