POSITIVE OPERATORS AND APPROXIMATION IN FUNCTION SPACES ON COMPLETELY REGULAR SPACES

IF 1 Q1 MATHEMATICS
F. Altomare, S. Diomede
{"title":"POSITIVE OPERATORS AND APPROXIMATION IN FUNCTION SPACES ON COMPLETELY REGULAR SPACES","authors":"F. Altomare, S. Diomede","doi":"10.1155/S0161171203301206","DOIUrl":null,"url":null,"abstract":"We discuss the approximation properties of nets of positive linear operators acting on function spaces defined on Hausdorff completely regular spaces. A particular attention is devoted to positive operators which are defined in terms of integrals with respect to a given family of Borel measures. We present several applications which, in particular, show the advantages of such a general approach. Among other things, some new Korovkin-type theorems on function spaces on arbitrary topological spaces are obtained. Finally, a natural extension of the so-called BernsteinSchnabl operators for convex (not necessarily compact) subsets of a locally convex space is presented as well.","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":"2003 1","pages":"3841-3871"},"PeriodicalIF":1.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/S0161171203301206","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/S0161171203301206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

We discuss the approximation properties of nets of positive linear operators acting on function spaces defined on Hausdorff completely regular spaces. A particular attention is devoted to positive operators which are defined in terms of integrals with respect to a given family of Borel measures. We present several applications which, in particular, show the advantages of such a general approach. Among other things, some new Korovkin-type theorems on function spaces on arbitrary topological spaces are obtained. Finally, a natural extension of the so-called BernsteinSchnabl operators for convex (not necessarily compact) subsets of a locally convex space is presented as well.
完全正则空间上函数空间中的正算子与逼近
讨论了作用于Hausdorff完全正则空间上的函数空间上的正线性算子网的逼近性质。特别注意的是正算子,它是根据给定的Borel测度族的积分来定义的。我们提出了几个应用程序,其中特别显示了这种一般方法的优点。得到了任意拓扑空间上关于函数空间的一些新的korovkin型定理。最后,给出了局部凸空间的凸子集(不一定是紧子集)的BernsteinSchnabl算子的自然扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES Mathematics-Mathematics (miscellaneous)
CiteScore
2.30
自引率
8.30%
发文量
60
审稿时长
17 weeks
期刊介绍: The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信