{"title":"AN IMPROVED BAYES EMPIRICAL BAYES ESTIMATOR","authors":"R. Karunamuni, N. Prasad","doi":"10.1155/S0161171203110046","DOIUrl":null,"url":null,"abstract":"Consider an experiment yielding an observable random quantity X whose distribution Fθ depends on a parameter θ with θ being distributed according to some distribution G0. We study the Bayesian estimation problem of θ under squared error loss function based on X, as well as some additional data available from other similar experiments according to an empirical Bayes structure. In a recent paper, Samaniego and Neath (1996) investigated the questions of whether, and when, this information can be exploited so as to provide a better estimate of θ in the current experiment. They constructed a Bayes empirical Bayes estimator that is superior to the original Bayes estimator, based only on the current observation X for sampling situations involving exponential families-conjugate prior pair. In this paper, we present an improved Bayes empirical Bayes estimator having a smaller Bayes risk than that of Samaniego and Neath’s estimator. We further observe that our estimator is superior to the original Bayes estimator in more general situations than those of the exponential families-conjugate prior combination.","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/S0161171203110046","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/S0161171203110046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Consider an experiment yielding an observable random quantity X whose distribution Fθ depends on a parameter θ with θ being distributed according to some distribution G0. We study the Bayesian estimation problem of θ under squared error loss function based on X, as well as some additional data available from other similar experiments according to an empirical Bayes structure. In a recent paper, Samaniego and Neath (1996) investigated the questions of whether, and when, this information can be exploited so as to provide a better estimate of θ in the current experiment. They constructed a Bayes empirical Bayes estimator that is superior to the original Bayes estimator, based only on the current observation X for sampling situations involving exponential families-conjugate prior pair. In this paper, we present an improved Bayes empirical Bayes estimator having a smaller Bayes risk than that of Samaniego and Neath’s estimator. We further observe that our estimator is superior to the original Bayes estimator in more general situations than those of the exponential families-conjugate prior combination.
期刊介绍:
The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.