{"title":"Hilbert series and applications to graded rings","authors":"S. Altınok","doi":"10.1155/S0161171203107090","DOIUrl":null,"url":null,"abstract":"This paper contains a number of practical remarks on Hilbert series that we expect to be useful in various contexts. We use the fractional Riemann-Roch formula of Fletcher and Reid to write out explicit formulas for the Hilbert series P( t)in a number of cases of interest for singular surfaces (see Lemma 2.1 )a nd 3-folds. If X is a Q-Fano 3-fold and S ∈| −KX | a K3 surface in its anticanonical system (or the general elephant of X), polarised with D = S (−KX ), we determine the relation between PX (t) and PS,D(t). We discuss the denominator � (1 − t ai ) of P( t) and, in particular, the question of how to choose a reasonably small denominator. This idea has applications to finding K3 surfaces and Fano 3-folds whose corresponding graded rings have small codimension. Most of the information about the anticanonical ring of a Fano 3-fold or K3 surface is contained in its Hilbert series. We believe that, by using information on Hilbert series, the classification of Q-Fano 3-folds is too close. Finding K3 surfaces are important because they occur as the general elephant of a Q-Fano 3-fold.","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/S0161171203107090","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/S0161171203107090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10
Abstract
This paper contains a number of practical remarks on Hilbert series that we expect to be useful in various contexts. We use the fractional Riemann-Roch formula of Fletcher and Reid to write out explicit formulas for the Hilbert series P( t)in a number of cases of interest for singular surfaces (see Lemma 2.1 )a nd 3-folds. If X is a Q-Fano 3-fold and S ∈| −KX | a K3 surface in its anticanonical system (or the general elephant of X), polarised with D = S (−KX ), we determine the relation between PX (t) and PS,D(t). We discuss the denominator � (1 − t ai ) of P( t) and, in particular, the question of how to choose a reasonably small denominator. This idea has applications to finding K3 surfaces and Fano 3-folds whose corresponding graded rings have small codimension. Most of the information about the anticanonical ring of a Fano 3-fold or K3 surface is contained in its Hilbert series. We believe that, by using information on Hilbert series, the classification of Q-Fano 3-folds is too close. Finding K3 surfaces are important because they occur as the general elephant of a Q-Fano 3-fold.
期刊介绍:
The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.