On the domain of selfadjoint extension of the product of Sturm-Liouville differential operators

IF 1 Q1 MATHEMATICS
S. Ibrahim
{"title":"On the domain of selfadjoint extension of the product of Sturm-Liouville differential operators","authors":"S. Ibrahim","doi":"10.1155/S0161171203008020","DOIUrl":null,"url":null,"abstract":"The second-order symmetric Sturm-Liouville differential expressions τ 1 , τ 2 , … , τ n with real coefficients are considered on the interval I = ( a , b ) , − ∞ ≤ a b ≤ ∞ . It is shown that the characterization of singular selfadjoint boundary conditions involves the sesquilinear form associated with the product of Sturm-Liouville differential expressions and elements of the maximal domain of the product operators, and it is an exact parallel of the regular case. This characterization is an extension of those obtained by Everitt and Zettl (1977), Hinton, Krall, and Shaw (1987), Ibrahim (1999), Krall and Zettl (1988), Lee (1975/1976), and Naimark (1968).","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":"2003 1","pages":"695-709"},"PeriodicalIF":1.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/S0161171203008020","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/S0161171203008020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The second-order symmetric Sturm-Liouville differential expressions τ 1 , τ 2 , … , τ n with real coefficients are considered on the interval I = ( a , b ) , − ∞ ≤ a b ≤ ∞ . It is shown that the characterization of singular selfadjoint boundary conditions involves the sesquilinear form associated with the product of Sturm-Liouville differential expressions and elements of the maximal domain of the product operators, and it is an exact parallel of the regular case. This characterization is an extension of those obtained by Everitt and Zettl (1977), Hinton, Krall, and Shaw (1987), Ibrahim (1999), Krall and Zettl (1988), Lee (1975/1976), and Naimark (1968).
Sturm-Liouville微分算子积的自伴随扩展的定义域
在区间I = (a, b),−∞≤a, b≤∞上考虑二阶对称Sturm-Liouville微分表达式τ 1, τ 2,…,τ n具有实数系数。证明了奇异自伴随边界条件的刻划涉及Sturm-Liouville微分表达式与乘积算子的极大域元素的乘积的半线性形式,并且是正则情况的精确平行。这一特征是Everitt和Zettl(1977)、Hinton、Krall和Shaw(1987)、Ibrahim(1999)、Krall和Zettl(1988)、Lee(1975/1976)和Naimark(1968)所得到的特征的延伸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES Mathematics-Mathematics (miscellaneous)
CiteScore
2.30
自引率
8.30%
发文量
60
审稿时长
17 weeks
期刊介绍: The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信