An Image Based Mathematical Model for the Propagation of Fan Noise in a Plenum with Large Side Openings

Q2 Physics and Astronomy
Michael J. Panza
{"title":"An Image Based Mathematical Model for the Propagation of Fan Noise in a Plenum with Large Side Openings","authors":"Michael J. Panza","doi":"10.1155/2015/361678","DOIUrl":null,"url":null,"abstract":"This paper presents another application of an images group model for a special enclosure geometry and source orientation. A previous work outlined the concept via application to a special tight-fitting enclosure. Application of the concept to a fan plenum requires different mathematical descriptions for the image groups. This paper describes the sound reverberation inside a sound enclosure with mostly open sides where the primary noise sources are the air inlets and exhausts of axial type fans located at the top of the enclosure, the sound transmission through the air inlet openings, and the radiation to wayside positions. The main reverberation between the floor and ceiling is determined with an image based mathematical model. The model considers how the main reverberant part image group is amplified by its images from two parallel bulkheads and any side wall frame members. The method of images approach allows the hard surfaces of an untreated plenum to be represented by perfectly reflecting surfaces with zero sound absorption coefficients, thus not requiring any estimate or measurement for these surfaces. Numerical results show excellent comparison to experimental results for an actual plenum. The image model is also shown to be significantly more accurate than the standard large room diffuse field reverberant model.","PeriodicalId":44068,"journal":{"name":"Advances in Acoustics and Vibration","volume":"2015 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/361678","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Acoustics and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/361678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents another application of an images group model for a special enclosure geometry and source orientation. A previous work outlined the concept via application to a special tight-fitting enclosure. Application of the concept to a fan plenum requires different mathematical descriptions for the image groups. This paper describes the sound reverberation inside a sound enclosure with mostly open sides where the primary noise sources are the air inlets and exhausts of axial type fans located at the top of the enclosure, the sound transmission through the air inlet openings, and the radiation to wayside positions. The main reverberation between the floor and ceiling is determined with an image based mathematical model. The model considers how the main reverberant part image group is amplified by its images from two parallel bulkheads and any side wall frame members. The method of images approach allows the hard surfaces of an untreated plenum to be represented by perfectly reflecting surfaces with zero sound absorption coefficients, thus not requiring any estimate or measurement for these surfaces. Numerical results show excellent comparison to experimental results for an actual plenum. The image model is also shown to be significantly more accurate than the standard large room diffuse field reverberant model.
一种基于图像的大侧开孔静压室内风扇噪声传播数学模型
本文给出了图像群模型的另一种应用,用于特殊的封闭几何形状和源方向。之前的作品通过一个特殊的紧身衣外壳概述了这个概念。将这一概念应用于风扇整体需要对图像组进行不同的数学描述。本文描述了一种侧边多为开式的声罩内的混响现象,主要噪声源是位于声罩顶部的轴流式风机的进排气口、声音通过进风口的传播以及对道旁位置的辐射。利用基于图像的数学模型确定了地板和天花板之间的主要混响。该模型考虑了主混响部分图像组如何被来自两个平行舱壁和任何侧壁框架构件的图像放大。图像方法允许未经处理的静压室的硬表面由具有零吸声系数的完美反射表面表示,因此不需要对这些表面进行任何估计或测量。数值结果与实际静压室的实验结果有很好的比较。图像模型也比标准的大房间漫反射场混响模型精度高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: The aim of Advances in Acoustics and Vibration is to act as a platform for dissemination of innovative and original research and development work in the area of acoustics and vibration. The target audience of the journal comprises both researchers and practitioners. Articles with innovative works of theoretical and/or experimental nature with research and/or application focus can be considered for publication in the journal. Articles submitted for publication in Advances in Acoustics and Vibration must neither have been published previously nor be under consideration elsewhere. Subject areas include (but are not limited to): Active, semi-active, passive and combined active-passive noise and vibration control Acoustic signal processing Aero-acoustics and aviation noise Architectural acoustics Audio acoustics, mechanisms of human hearing, musical acoustics Community and environmental acoustics and vibration Computational acoustics, numerical techniques Condition monitoring, health diagnostics, vibration testing, non-destructive testing Human response to sound and vibration, Occupational noise exposure and control Industrial, machinery, transportation noise and vibration Low, mid, and high frequency noise and vibration Materials for noise and vibration control Measurement and actuation techniques, sensors, actuators Modal analysis, statistical energy analysis, wavelet analysis, inverse methods Non-linear acoustics and vibration Sound and vibration sources, source localisation, sound propagation Underwater and ship acoustics Vibro-acoustics and shock.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信