Jordan Chaires, David Schumerth, Cole Drawdy, Weiguo Yang
{"title":"Gain Incorporated Split-Ring Resonator Structures for Active Metamaterials","authors":"Jordan Chaires, David Schumerth, Cole Drawdy, Weiguo Yang","doi":"10.1155/2015/247630","DOIUrl":null,"url":null,"abstract":"We present a systematic study of split-ring resonator (SRR) structures that are used as the basic building blocks of active metamaterials with incorporated gain. The active split-ring resonator (aSRR) structures with gain elements can in theory have similar unusual electromagnetic responses such as negative effective permeability near their resonance of the artificial magnetic response just like their passive counterparts. At the same time aSRRs can have reversed imaginary part of the effective permeability and, therefore, mitigate the loss of passive SRRs. We explored in detail both passive and active SRRs through analytic theory, numerical simulations, and lab experimentation and demonstrated that aSRRs can have the similar negative effective permeability responses while reducing and even reversing the loss.","PeriodicalId":7352,"journal":{"name":"Advances in Optoelectronics","volume":"2015 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/247630","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/247630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
We present a systematic study of split-ring resonator (SRR) structures that are used as the basic building blocks of active metamaterials with incorporated gain. The active split-ring resonator (aSRR) structures with gain elements can in theory have similar unusual electromagnetic responses such as negative effective permeability near their resonance of the artificial magnetic response just like their passive counterparts. At the same time aSRRs can have reversed imaginary part of the effective permeability and, therefore, mitigate the loss of passive SRRs. We explored in detail both passive and active SRRs through analytic theory, numerical simulations, and lab experimentation and demonstrated that aSRRs can have the similar negative effective permeability responses while reducing and even reversing the loss.
期刊介绍:
Advances in OptoElectronics is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of optoelectronics.