Group Analysis Explicit Power Series Solutions and Conservation Laws of the Time-Fractional Generalized Foam Drainage Equation

IF 1.4 Q2 MATHEMATICS, APPLIED
Maria Ihsane El Bahi, K. Hilal
{"title":"Group Analysis Explicit Power Series Solutions and Conservation Laws of the Time-Fractional Generalized Foam Drainage Equation","authors":"Maria Ihsane El Bahi, K. Hilal","doi":"10.1155/2023/8241804","DOIUrl":null,"url":null,"abstract":"In this study, the classical Lie symmetry method is successfully applied to investigate the symmetries of the time-fractional generalized foam drainage equation with the Riemann–Liouville derivative. With the help of the obtained Lie point symmetries, the equation is reduced to nonlinear fractional ordinary differential equations (NLFODEs) which contain the Erdélyi–Kober fractional differential operator. The equation is also studied by applying the power series method, which enables us to obtain extra solutions. The obtained power series solution is further examined for convergence. Conservation laws for this equation are obtained with the aid of the new conservation theorem and the fractional generalization of the Noether operators.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8241804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the classical Lie symmetry method is successfully applied to investigate the symmetries of the time-fractional generalized foam drainage equation with the Riemann–Liouville derivative. With the help of the obtained Lie point symmetries, the equation is reduced to nonlinear fractional ordinary differential equations (NLFODEs) which contain the Erdélyi–Kober fractional differential operator. The equation is also studied by applying the power series method, which enables us to obtain extra solutions. The obtained power series solution is further examined for convergence. Conservation laws for this equation are obtained with the aid of the new conservation theorem and the fractional generalization of the Noether operators.
时间分数型广义泡沫排水方程的群分析、显式幂级数解及守恒律
本文成功地应用经典李对称方法研究了具有Riemann-Liouville导数的时间分数型广义泡沫排水方程的对称性。利用所得到的Lie点对称性,将方程简化为包含erdsamlyi - kober分数阶微分算子的非线性分数阶常微分方程(NLFODEs)。应用幂级数法对方程进行了研究,得到了额外的解。进一步检验了所得幂级数解的收敛性。利用新的守恒定理和Noether算子的分数推广,得到了该方程的守恒定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信