{"title":"Copula-Based Joint Flood Frequency Analysis: The Case of Guder River, Upper Blue Nile Basin, Ethiopia","authors":"M. Haile, Rakesh Khosa, Asnake Kassahun Abebe, Ayansa Teshome Gelalcha, Abera Misgana Tolera","doi":"10.1155/2023/7637884","DOIUrl":null,"url":null,"abstract":"The univariate analysis of hydrological extremes is a well-established practice in developing countries such as Ethiopia. However, for the design of hydrological and hydraulic systems, it is essential to have a thorough understanding of flood event characteristics, including volumes, peaks, time of occurrence, and duration. This study utilizes copula functions for bivariate modeling of flood peak and volume characteristics, examining the performance of four Archimedean copulas in the Guder basin located in Ethiopia from 1987 to 2017. Flood peak and volume were extracted using the theory of runs for analysis of their joint characteristics with the truncation level chosen as equal to the lowest annual maximum event. Univariate distributions with the best fitness on both variables were determined, and results showed that gamma and GEV-fitted flood peaks and lognormal-fitted flood volumes are the most suitable. Four Archimedean copulas were evaluated, and the Gumbel-Hougaard copula was found to be the best fit for the data based on graphical and measurable tests. Bivariate probability and return period were computed in “AND” and “OR” states. The joint return period for flood peak (97.49 m3/s) and volume (77.35 m3/s) was found to be 15 years in the “AND” state and approximately 4 years in the “OR” state. The study also evaluates univariate and conditional return periods, comparing them with the primary one. The copula method was an effective method for distributing marginal variables, highlighting its potential as a valuable tool in flood management.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":"1 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2023/7637884","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The univariate analysis of hydrological extremes is a well-established practice in developing countries such as Ethiopia. However, for the design of hydrological and hydraulic systems, it is essential to have a thorough understanding of flood event characteristics, including volumes, peaks, time of occurrence, and duration. This study utilizes copula functions for bivariate modeling of flood peak and volume characteristics, examining the performance of four Archimedean copulas in the Guder basin located in Ethiopia from 1987 to 2017. Flood peak and volume were extracted using the theory of runs for analysis of their joint characteristics with the truncation level chosen as equal to the lowest annual maximum event. Univariate distributions with the best fitness on both variables were determined, and results showed that gamma and GEV-fitted flood peaks and lognormal-fitted flood volumes are the most suitable. Four Archimedean copulas were evaluated, and the Gumbel-Hougaard copula was found to be the best fit for the data based on graphical and measurable tests. Bivariate probability and return period were computed in “AND” and “OR” states. The joint return period for flood peak (97.49 m3/s) and volume (77.35 m3/s) was found to be 15 years in the “AND” state and approximately 4 years in the “OR” state. The study also evaluates univariate and conditional return periods, comparing them with the primary one. The copula method was an effective method for distributing marginal variables, highlighting its potential as a valuable tool in flood management.
期刊介绍:
Advances in Meteorology is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of meteorology and climatology. Topics covered include, but are not limited to, forecasting techniques and applications, meteorological modeling, data analysis, atmospheric chemistry and physics, climate change, satellite meteorology, marine meteorology, and forest meteorology.