Dynamic Processes of Self-Organization in Nonstationary Conditions of Friction

IF 1.5 Q3 ENGINEERING, MECHANICAL
T. Al-Quraan, Olha Ilina, Mukola Kulyk, R. Mnatsakanov, O. Mikosianchyk, Volodumur Melnyk
{"title":"Dynamic Processes of Self-Organization in Nonstationary Conditions of Friction","authors":"T. Al-Quraan, Olha Ilina, Mukola Kulyk, R. Mnatsakanov, O. Mikosianchyk, Volodumur Melnyk","doi":"10.1155/2023/6676706","DOIUrl":null,"url":null,"abstract":"Self-organization mechanisms of metastable dissipative structures during friction depending on base and oil functional additives for hypoid gears are considered. Research was conducted on a software-hardware complex with simulation of gears’ operation in rolling with slipping conditions in start-stop mode. Indicators of formation of wear-resistant dissipative structures include the following: improvement of antifriction characteristics, lubricant boundary layers’ formation, contact surfaces’ strengthening, and formation of heterogeneous deformation microrelief with a fine-grained structure. The formation of chemically modified boundary layers on 90% of the contact area of tribo-coupling elements ensures an increase in the wear resistance of leading and lagging surfaces by 2 and 1.4 times, respectively. The sclerometry method was used to establish that the formation of dissipative structures when lubricating tribo-coupling elements with various transmission oils can reduce deformation processes in metal near-surface layers by 23%. Highly viscous flavored lubricant with distillate oil and additive composition ensures wear-resistant dissipative structures with active components, including oxygen, sulfur, and phosphorus.","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6676706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Self-organization mechanisms of metastable dissipative structures during friction depending on base and oil functional additives for hypoid gears are considered. Research was conducted on a software-hardware complex with simulation of gears’ operation in rolling with slipping conditions in start-stop mode. Indicators of formation of wear-resistant dissipative structures include the following: improvement of antifriction characteristics, lubricant boundary layers’ formation, contact surfaces’ strengthening, and formation of heterogeneous deformation microrelief with a fine-grained structure. The formation of chemically modified boundary layers on 90% of the contact area of tribo-coupling elements ensures an increase in the wear resistance of leading and lagging surfaces by 2 and 1.4 times, respectively. The sclerometry method was used to establish that the formation of dissipative structures when lubricating tribo-coupling elements with various transmission oils can reduce deformation processes in metal near-surface layers by 23%. Highly viscous flavored lubricant with distillate oil and additive composition ensures wear-resistant dissipative structures with active components, including oxygen, sulfur, and phosphorus.
非平稳摩擦条件下自组织的动态过程
研究了准双曲面齿轮摩擦过程中亚稳态耗散结构的自组织机制。研究了一种软硬件组合系统,模拟了齿轮在启停工况下的滑移滚动过程。耐磨耗散结构形成的指标包括:减摩特性的改善、润滑剂边界层的形成、接触面的强化、细粒结构的非均质变形微浮雕的形成。在摩擦耦合元件90%的接触面积上形成化学修饰的边界层,确保了前导面和滞后面的耐磨性分别提高了2倍和1.4倍。采用硬化法确定了用不同的传动油润滑摩擦联轴器元件时所形成的耗散结构可使金属近表层的变形过程减少23%。高粘性调味润滑油与馏分油和添加剂组成确保耐磨耗散结构与活性成分,包括氧,硫和磷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Tribology
Advances in Tribology ENGINEERING, MECHANICAL-
CiteScore
5.00
自引率
0.00%
发文量
1
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信