Kyoji Ueda, Y. Hanazono, N. Ageyama, H. Shibata, Satoko Ogata, Y. Ueda, T. Tabata, S. Ikehara, M. Taniwaki, M. Hasegawa, K. Terao, K. Ozawa
{"title":"Method — Intra-bone marrow transplantation of hematopoietic stem cells in non-human primates: long-term engraftment without conditioning","authors":"Kyoji Ueda, Y. Hanazono, N. Ageyama, H. Shibata, Satoko Ogata, Y. Ueda, T. Tabata, S. Ikehara, M. Taniwaki, M. Hasegawa, K. Terao, K. Ozawa","doi":"10.1163/1568558042457460","DOIUrl":null,"url":null,"abstract":"It has recently been reported that bone marrow cells can efficiently engraft without marrow conditioning when implanted directly into the bone marrow cavity (intra-bone marrow transplantation, iBMT) in mice. We have successfully examined the efficacy of autologous iBMT in a cynomolgus monkey model in conjuction with an in vivo expansion of transplanted cells by a selective amplifier transgene (Ueda et al., 2004) and provide here the detailed parameters of our iBMT method. We injected retrovirally-marked autologous CD34+ cells directly into the non-conditioned marrow cavity of the femur and humerus after gently irrigating the cavity with saline. This transplant procedure was safely performed without pulmonary embolism. Gene-marked cells were not detectable in the peripheral blood at one hour and one day after iBMT as assessed by sensitive PCR, indicating that iBMT hardly generated a systemic delivery of transplanted cells. On the other hand, 2 to 30% of clonogenic hematopoietic colonies produced from the implanted marrow were gene-marked at 6–12 months after iBMT. Our iBMT method for non-human primates is thus discussed in terms of long-lived hematopoietic stem/progenitor cells, bone marrow niche and long-term engraftment after iBMT without myeloablative conditioning.","PeriodicalId":93646,"journal":{"name":"Gene therapy and regulation","volume":"2 1","pages":"207-218"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/1568558042457460","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene therapy and regulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/1568558042457460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
It has recently been reported that bone marrow cells can efficiently engraft without marrow conditioning when implanted directly into the bone marrow cavity (intra-bone marrow transplantation, iBMT) in mice. We have successfully examined the efficacy of autologous iBMT in a cynomolgus monkey model in conjuction with an in vivo expansion of transplanted cells by a selective amplifier transgene (Ueda et al., 2004) and provide here the detailed parameters of our iBMT method. We injected retrovirally-marked autologous CD34+ cells directly into the non-conditioned marrow cavity of the femur and humerus after gently irrigating the cavity with saline. This transplant procedure was safely performed without pulmonary embolism. Gene-marked cells were not detectable in the peripheral blood at one hour and one day after iBMT as assessed by sensitive PCR, indicating that iBMT hardly generated a systemic delivery of transplanted cells. On the other hand, 2 to 30% of clonogenic hematopoietic colonies produced from the implanted marrow were gene-marked at 6–12 months after iBMT. Our iBMT method for non-human primates is thus discussed in terms of long-lived hematopoietic stem/progenitor cells, bone marrow niche and long-term engraftment after iBMT without myeloablative conditioning.