An Effective Hybrid Algorithm Based on Particle Swarm Optimization with Migration Method for Solving the Multiskill Resource-Constrained Project Scheduling Problem
IF 2.4 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"An Effective Hybrid Algorithm Based on Particle Swarm Optimization with Migration Method for Solving the Multiskill Resource-Constrained Project Scheduling Problem","authors":"Huu Dang Quoc, Loc Nguyen The, Cuong Nguyen Doan","doi":"10.1155/2022/6230145","DOIUrl":null,"url":null,"abstract":"The paper proposed a new algorithm to solve the Multiskill Resource-Constrained Project Scheduling Problem (MS-RCPSP), a combinational optimization problem proved in NP-Hard classification, so it cannot get an optimal solution in polynomial time. The NP-Hard problems can be solved using metaheuristic methods to evolve the population over many generations, thereby finding approximate solutions. However, most metaheuristics have a weakness that can be dropping into local extreme after a number of evolution generations. The new algorithm proposed in this paper will resolve that by detecting local extremes and escaping that by moving the population to new space. That is executed using the Migration technique combined with the Particle Swarm Optimization (PSO) method. The new algorithm is called M-PSO. The experiments were conducted with the iMOPSE benchmark dataset and showed that the M-PSO was more practical than the early algorithms.","PeriodicalId":44894,"journal":{"name":"Applied Computational Intelligence and Soft Computing","volume":"2022 1","pages":"6230145:1-6230145:12"},"PeriodicalIF":2.4000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Intelligence and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/6230145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5
Abstract
The paper proposed a new algorithm to solve the Multiskill Resource-Constrained Project Scheduling Problem (MS-RCPSP), a combinational optimization problem proved in NP-Hard classification, so it cannot get an optimal solution in polynomial time. The NP-Hard problems can be solved using metaheuristic methods to evolve the population over many generations, thereby finding approximate solutions. However, most metaheuristics have a weakness that can be dropping into local extreme after a number of evolution generations. The new algorithm proposed in this paper will resolve that by detecting local extremes and escaping that by moving the population to new space. That is executed using the Migration technique combined with the Particle Swarm Optimization (PSO) method. The new algorithm is called M-PSO. The experiments were conducted with the iMOPSE benchmark dataset and showed that the M-PSO was more practical than the early algorithms.
期刊介绍:
Applied Computational Intelligence and Soft Computing will focus on the disciplines of computer science, engineering, and mathematics. The scope of the journal includes developing applications related to all aspects of natural and social sciences by employing the technologies of computational intelligence and soft computing. The new applications of using computational intelligence and soft computing are still in development. Although computational intelligence and soft computing are established fields, the new applications of using computational intelligence and soft computing can be regarded as an emerging field, which is the focus of this journal.