A Mixture of Clayton, Gumbel, and Frank Copulas: A Complete Dependence Model

IF 1 Q3 STATISTICS & PROBABILITY
M. A. Boateng, A. Y. Omari-Sasu, R. Avuglah, N. K. Frempong
{"title":"A Mixture of Clayton, Gumbel, and Frank Copulas: A Complete Dependence Model","authors":"M. A. Boateng, A. Y. Omari-Sasu, R. Avuglah, N. K. Frempong","doi":"10.1155/2022/1422394","DOIUrl":null,"url":null,"abstract":"Knowledge of the dependence between random variables is necessary in the area of risk assessment and evaluation. Some of the existing Archimedean copulas, namely the Clayton and the Gumbel copulas, allow for higher correlations on the extreme left and right, respectively. In this study, we use the idea of convex combinations to build a hybrid Clayton–Gumbel–Frank copula that provides all dependence scenarios from existing Archimedean copulas. The corresponding density and conditional distribution functions of the derived models for two random variables, as well as an estimator for the proportion parameter associated with the proposed model, are also derived. The results show that the proposed model is able to show any case of dependence by providing coefficients for the upper tail and lower tail dependence.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/1422394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

Knowledge of the dependence between random variables is necessary in the area of risk assessment and evaluation. Some of the existing Archimedean copulas, namely the Clayton and the Gumbel copulas, allow for higher correlations on the extreme left and right, respectively. In this study, we use the idea of convex combinations to build a hybrid Clayton–Gumbel–Frank copula that provides all dependence scenarios from existing Archimedean copulas. The corresponding density and conditional distribution functions of the derived models for two random variables, as well as an estimator for the proportion parameter associated with the proposed model, are also derived. The results show that the proposed model is able to show any case of dependence by providing coefficients for the upper tail and lower tail dependence.
Clayton, Gumbel和Frank Copulas的混合:一个完全依赖模型
在风险评估和评价领域,了解随机变量之间的相关性是必要的。一些现存的阿基米德联系图,即克莱顿联系图和冈贝尔联系图,分别在极左和极右有较高的相关性。在这项研究中,我们使用凸组合的思想来构建混合Clayton-Gumbel-Frank copula,该copula提供了来自现有阿基米德copula的所有依赖场景。本文还推导了两个随机变量模型的密度和条件分布函数,以及与所提模型相关的比例参数的估计量。结果表明,通过提供上尾和下尾依赖系数,该模型能够显示任何依赖情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信