A New Class of Contact Pseudo Framed Manifolds with Applications

IF 1 Q1 MATHEMATICS
K. L. Duggal
{"title":"A New Class of Contact Pseudo Framed Manifolds with Applications","authors":"K. L. Duggal","doi":"10.1155/2021/6141587","DOIUrl":null,"url":null,"abstract":"<jats:p>In this paper, we introduce a new class of contact pseudo framed (CPF)-manifolds <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>M</mi>\n <mo>,</mo>\n <mi>g</mi>\n <mo>,</mo>\n <mi>f</mi>\n <mo>,</mo>\n <mi>λ</mi>\n <mo>,</mo>\n <mi>ξ</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> by a real tensor field <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>f</mi>\n </math>\n </jats:inline-formula> of type <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>1,1</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, a real function <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>λ</mi>\n </math>\n </jats:inline-formula> such that <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <msup>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n <mo>=</mo>\n <msup>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n <mi>f</mi>\n </math>\n </jats:inline-formula> where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>ξ</mi>\n </math>\n </jats:inline-formula> is its characteristic vector field. We prove in our main Theorem 2 that <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>M</mi>\n </math>\n </jats:inline-formula> admits a closed 2-form <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mi mathvariant=\"normal\">Ω</mi>\n </math>\n </jats:inline-formula> if <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mi>λ</mi>\n </math>\n </jats:inline-formula> is constant. In 1976, Blair proved that the vector field <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mi>ξ</mi>\n </math>\n </jats:inline-formula> of a normal contact manifold is Killing. Contrary to this, we have shown in Theorem 2 that, in general, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mi>ξ</mi>\n </math>\n </jats:inline-formula> of a normal CPF-manifold is non-Killing. We also have established a link of CPF-hypersurfaces with curvature, affine, conformal collineations symmetries, and almost Ricci soliton manifolds, supported by three applications. Contrary to the odd-dimensional contact manifolds, we construct several examples of even- and odd-dimensional semi-Riemannian and lightlike CPF-manifolds and propose two problems for further consideration.</jats:p>","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":"2021 1","pages":"6141587:1-6141587:9"},"PeriodicalIF":1.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6141587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a new class of contact pseudo framed (CPF)-manifolds M , g , f , λ , ξ by a real tensor field f of type 1,1 , a real function λ such that f 3 = λ 2 f where ξ is its characteristic vector field. We prove in our main Theorem 2 that M admits a closed 2-form Ω if λ is constant. In 1976, Blair proved that the vector field ξ of a normal contact manifold is Killing. Contrary to this, we have shown in Theorem 2 that, in general, ξ of a normal CPF-manifold is non-Killing. We also have established a link of CPF-hypersurfaces with curvature, affine, conformal collineations symmetries, and almost Ricci soliton manifolds, supported by three applications. Contrary to the odd-dimensional contact manifolds, we construct several examples of even- and odd-dimensional semi-Riemannian and lightlike CPF-manifolds and propose two problems for further consideration.
一类新的接触伪框架流形及其应用
本文引入了一类新的接触伪框架流形M, g, f, λ,ξ由一个实张量场f (1,1)使f3 =的实函数2f,其中ξ是它的特征向量场。在主要定理2中,我们证明了如果λ是常数,M承认一个闭2型Ω。1976年,Blair证明了法向接触流形的向量场ξ为kill。与此相反,我们已经在定理2中证明,一般情况下,普通cpf流形的ξ是非杀伤的。我们还建立了具有曲率、仿射、共形共视对称性和几乎里奇孤子流形的cpf超曲面的链接,并得到了三个应用的支持。与奇维接触流形相反,我们构造了几个偶维、奇维半黎曼流形和类光cpf流形的例子,并提出了两个值得进一步考虑的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES Mathematics-Mathematics (miscellaneous)
CiteScore
2.30
自引率
8.30%
发文量
60
审稿时长
17 weeks
期刊介绍: The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信