{"title":"Relative Gottlieb Groups of Embeddings between Complex Grassmannians","authors":"J. Gatsinzi","doi":"10.1155/2021/1417769","DOIUrl":null,"url":null,"abstract":"<jats:p>Let <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mtext>Gr</mtext>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> be the complex Grassmann manifold of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>k</mi>\n </math>\n </jats:inline-formula>-linear subspaces in <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msup>\n <mrow>\n <mi>ℂ</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula>. We compute rational relative Gottlieb groups of the embedding <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>i</mi>\n <mo>:</mo>\n <mtext>Gr</mtext>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n </mfenced>\n <mo>⟶</mo>\n <mtext>Gr</mtext>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>+</mo>\n <mi>r</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> and show that the <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>G</mi>\n </math>\n </jats:inline-formula>-sequence is exact if <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>r</mi>\n <mo>≥</mo>\n <mi>k</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mi>k</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>.</jats:p>","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/1417769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Let be the complex Grassmann manifold of -linear subspaces in . We compute rational relative Gottlieb groups of the embedding and show that the -sequence is exact if .
期刊介绍:
The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.