{"title":"Long-term observational characteristics of different severe convective wind types around Australia","authors":"Andrew Brown, A. Dowdy, T. Lane, S. Hitchcock","doi":"10.1175/waf-d-23-0069.1","DOIUrl":null,"url":null,"abstract":"\nRegional understanding of severe surface winds produced by convective processes (severe convective winds: SCWs) is important for decision making in several areas of society, including weather forecasting and engineering design. Meteorological studies have demonstrated that SCWs can occur due to a number of different mesoscale and microscale processes, in a range of large-scale atmospheric environments. However, long-term observational studies of SCW characteristics often have not considered this diversity in physical processes, particularly in Australia. Here, a statistical clustering method is used to separate a large dataset of SCW events, measured by automatic weather stations around Australia, into three types, associated with strong background wind, steep lapse rate, and high moisture environments. These different types of SCWs are shown to have different seasonal and spatial variations in their occurrence, as well as different measured wind gust, lightning, and parent-storm characteristics. In addition, various convective diagnostics are tested in their ability to discriminate between measured SCW events and non-severe events, with significant variations in skill between event types. Differences in environmental conditions and wind gust characteristics between clusters suggests potentially different physical processes for SCW production. These findings are intended to improve regional understanding of severe wind characteristics, as well as environmental prediction of SCWs in weather and climate applications, by considering different event types.","PeriodicalId":49369,"journal":{"name":"Weather and Forecasting","volume":"1 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/waf-d-23-0069.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Regional understanding of severe surface winds produced by convective processes (severe convective winds: SCWs) is important for decision making in several areas of society, including weather forecasting and engineering design. Meteorological studies have demonstrated that SCWs can occur due to a number of different mesoscale and microscale processes, in a range of large-scale atmospheric environments. However, long-term observational studies of SCW characteristics often have not considered this diversity in physical processes, particularly in Australia. Here, a statistical clustering method is used to separate a large dataset of SCW events, measured by automatic weather stations around Australia, into three types, associated with strong background wind, steep lapse rate, and high moisture environments. These different types of SCWs are shown to have different seasonal and spatial variations in their occurrence, as well as different measured wind gust, lightning, and parent-storm characteristics. In addition, various convective diagnostics are tested in their ability to discriminate between measured SCW events and non-severe events, with significant variations in skill between event types. Differences in environmental conditions and wind gust characteristics between clusters suggests potentially different physical processes for SCW production. These findings are intended to improve regional understanding of severe wind characteristics, as well as environmental prediction of SCWs in weather and climate applications, by considering different event types.
期刊介绍:
Weather and Forecasting (WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the transfer of research results to the forecasting community, and the societal use and value of forecasts. The scope of WAF includes research relevant to forecast lead times ranging from short-term “nowcasts” through seasonal time scales out to approximately two years.