Existence of Optimal Control for a Nonlinear-Viscous Fluid Model

IF 1.5 Q2 MATHEMATICS, APPLIED
E. Baranovskii, M. A. Artemov
{"title":"Existence of Optimal Control for a Nonlinear-Viscous Fluid Model","authors":"E. Baranovskii, M. A. Artemov","doi":"10.1155/2016/9428128","DOIUrl":null,"url":null,"abstract":"We consider the optimal control problem for a mathematical model describing steady flows of a nonlinear-viscous incompressible fluid in a bounded three-dimensional (or a two-dimensional) domain with impermeable solid walls. The control parameter is the surface force at a given part of the flow domain boundary. For a given bounded set of admissible controls, we construct generalized (weak) solutions that minimize a given cost functional.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":"2016 1","pages":"1-6"},"PeriodicalIF":1.5000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/9428128","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/9428128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 12

Abstract

We consider the optimal control problem for a mathematical model describing steady flows of a nonlinear-viscous incompressible fluid in a bounded three-dimensional (or a two-dimensional) domain with impermeable solid walls. The control parameter is the surface force at a given part of the flow domain boundary. For a given bounded set of admissible controls, we construct generalized (weak) solutions that minimize a given cost functional.
一类非线性粘性流体模型最优控制的存在性
我们考虑了一个数学模型的最优控制问题,该数学模型描述了具有不渗透固体壁的非线性粘性不可压缩流体在有界三维(或二维)域中的稳定流动。控制参数是流域边界给定部分的表面力。对于给定的可容许控制的有界集合,我们构造了最小化给定代价泛函的广义(弱)解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信