{"title":"Properties of an A-current in slowly and rapidly adapting stretch receptor neurones of lobster","authors":"W. Grampp, S. Theander","doi":"10.1163/092996397750132008","DOIUrl":null,"url":null,"abstract":"A previously unnoticed outward membrane current has been identified, characterized and specified as a so-called A-current in the slowly and rapidly adapting lobster stretch receptor neurone. In both cells the current was, after blockage of a tetrodotoxin-sensitive Na + current and a tetraethylammonium- and 4-aminopyridine-sensitive delayed rectifier current, seen to activate fully within about 25 ms of square-shaped depolarizations beyond voltage levels of -40 to -30 mV and, then, to inactivate completely with a (voltage independent, within the voltage span under observation) time constant of 110 ms. The A-currents of rapidly and slowly adapting receptors were noticed to differ significantly from each other in that the A-current of the rapidly adapting cell is activated, and inactivated, at 10-15 mV more negative voltage levels than the A-current of the slowly adapting cell. Also, the maximum permeability of the A-channel system appeared to be distinctly larger in the rapidly than in the slowly adapting cell. Both of these circumstances were able to explain why, at a given level of membrane depolarization, a markedly stronger A-current is activated in the rapidly than in the slowly adapting cell. On the basis of experimental data it was possible to formulate a mathematical A-current description which was incorporated into a previously published model of the lobster stretch receptor neurone. Using this model, evidence was obtained that the A-current may play a functionally significant role (in the rapidly adapting cell) by increasing the speed of action potential repolarization and thereby enhancing the cell's dynamic stimulus sensitivity.","PeriodicalId":82360,"journal":{"name":"Primary sensory neuron : the international interdisciplinary journal reporting basic and clinical research on sensory receptors and primary afferent neurons","volume":"2 1","pages":"211-227"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/092996397750132008","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Primary sensory neuron : the international interdisciplinary journal reporting basic and clinical research on sensory receptors and primary afferent neurons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/092996397750132008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A previously unnoticed outward membrane current has been identified, characterized and specified as a so-called A-current in the slowly and rapidly adapting lobster stretch receptor neurone. In both cells the current was, after blockage of a tetrodotoxin-sensitive Na + current and a tetraethylammonium- and 4-aminopyridine-sensitive delayed rectifier current, seen to activate fully within about 25 ms of square-shaped depolarizations beyond voltage levels of -40 to -30 mV and, then, to inactivate completely with a (voltage independent, within the voltage span under observation) time constant of 110 ms. The A-currents of rapidly and slowly adapting receptors were noticed to differ significantly from each other in that the A-current of the rapidly adapting cell is activated, and inactivated, at 10-15 mV more negative voltage levels than the A-current of the slowly adapting cell. Also, the maximum permeability of the A-channel system appeared to be distinctly larger in the rapidly than in the slowly adapting cell. Both of these circumstances were able to explain why, at a given level of membrane depolarization, a markedly stronger A-current is activated in the rapidly than in the slowly adapting cell. On the basis of experimental data it was possible to formulate a mathematical A-current description which was incorporated into a previously published model of the lobster stretch receptor neurone. Using this model, evidence was obtained that the A-current may play a functionally significant role (in the rapidly adapting cell) by increasing the speed of action potential repolarization and thereby enhancing the cell's dynamic stimulus sensitivity.