Mixed Skyhook and FxLMS Control of a Half-Car Model with Magnetorheological Dampers

Q2 Physics and Astronomy
P. Krauze, J. Kasprzyk
{"title":"Mixed Skyhook and FxLMS Control of a Half-Car Model with Magnetorheological Dampers","authors":"P. Krauze, J. Kasprzyk","doi":"10.1155/2016/7428616","DOIUrl":null,"url":null,"abstract":"The problem of vibration attenuation in a semiactive vehicle suspension is considered. The proposed solution is based on usage of the information about the road roughness coming from the sensor installed on the front axle of the vehicle. It does not need any preview sensor to measure the road roughness as other preview control strategies do. Here, the well-known Skyhook algorithm is used for control of the front magnetorheological (MR) damper. This algorithm is tuned to a quarter-car model of the front part of the vehicle. The rear MR damper is controlled by the FxLMS (Filtered-x LMS) taking advantage of the information about the motion of the front vehicle axle. The goal of this algorithm is to minimize pitch of the vehicle body. The strategy is applied for a four-degree-of-freedom (4-DOF) vehicle model equipped with magnetorheological dampers which were described using the Bouc-Wen model. The suspension model was subjected to the road-induced excitation in the form of a series of bumps within the frequency range 1.0–10 Hz. Different solutions are compared based on the transmissibility function and simulation results show the usefulness of the proposed solution.","PeriodicalId":44068,"journal":{"name":"Advances in Acoustics and Vibration","volume":"2016 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/7428616","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Acoustics and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/7428616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 8

Abstract

The problem of vibration attenuation in a semiactive vehicle suspension is considered. The proposed solution is based on usage of the information about the road roughness coming from the sensor installed on the front axle of the vehicle. It does not need any preview sensor to measure the road roughness as other preview control strategies do. Here, the well-known Skyhook algorithm is used for control of the front magnetorheological (MR) damper. This algorithm is tuned to a quarter-car model of the front part of the vehicle. The rear MR damper is controlled by the FxLMS (Filtered-x LMS) taking advantage of the information about the motion of the front vehicle axle. The goal of this algorithm is to minimize pitch of the vehicle body. The strategy is applied for a four-degree-of-freedom (4-DOF) vehicle model equipped with magnetorheological dampers which were described using the Bouc-Wen model. The suspension model was subjected to the road-induced excitation in the form of a series of bumps within the frequency range 1.0–10 Hz. Different solutions are compared based on the transmissibility function and simulation results show the usefulness of the proposed solution.
带磁流变阻尼器的半车模型混合Skyhook和FxLMS控制
研究了汽车半主动悬架的振动衰减问题。所提出的解决方案是基于安装在车辆前轴上的传感器所提供的路面粗糙度信息的使用。它不像其他的预览控制策略那样需要任何预览传感器来测量路面粗糙度。在这里,众所周知的Skyhook算法被用于控制前磁流变(MR)阻尼器。该算法被调整为车辆前部的四分之一汽车模型。后磁流变阻尼器由FxLMS (filter -x LMS)控制,利用车辆前轴的运动信息。该算法的目标是使车身俯仰最小。将该策略应用于一个采用Bouc-Wen模型描述的带有磁流变阻尼器的四自由度车辆模型。该悬架模型在1.0-10 Hz的频率范围内受到一系列颠簸形式的道路诱导激励。基于传递率函数对不同解进行了比较,仿真结果表明了所提解的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: The aim of Advances in Acoustics and Vibration is to act as a platform for dissemination of innovative and original research and development work in the area of acoustics and vibration. The target audience of the journal comprises both researchers and practitioners. Articles with innovative works of theoretical and/or experimental nature with research and/or application focus can be considered for publication in the journal. Articles submitted for publication in Advances in Acoustics and Vibration must neither have been published previously nor be under consideration elsewhere. Subject areas include (but are not limited to): Active, semi-active, passive and combined active-passive noise and vibration control Acoustic signal processing Aero-acoustics and aviation noise Architectural acoustics Audio acoustics, mechanisms of human hearing, musical acoustics Community and environmental acoustics and vibration Computational acoustics, numerical techniques Condition monitoring, health diagnostics, vibration testing, non-destructive testing Human response to sound and vibration, Occupational noise exposure and control Industrial, machinery, transportation noise and vibration Low, mid, and high frequency noise and vibration Materials for noise and vibration control Measurement and actuation techniques, sensors, actuators Modal analysis, statistical energy analysis, wavelet analysis, inverse methods Non-linear acoustics and vibration Sound and vibration sources, source localisation, sound propagation Underwater and ship acoustics Vibro-acoustics and shock.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信