Error Analysis of an Implicit Spectral Scheme Applied to the Schrödinger-Benjamin-Ono System

IF 1.5 Q2 MATHEMATICS, APPLIED
Juan Carlos Muñoz Grajales
{"title":"Error Analysis of an Implicit Spectral Scheme Applied to the Schrödinger-Benjamin-Ono System","authors":"Juan Carlos Muñoz Grajales","doi":"10.1155/2016/6930758","DOIUrl":null,"url":null,"abstract":"We develop error estimates of the semidiscrete and fully discrete formulations of a Fourier-Galerkin numerical scheme to approximate solutions of a coupled nonlinear Schrodinger-Benjamin-Ono system that describes the motion of two fluids with different densities under capillary-gravity waves in a deep water regime. The accuracy of the numerical solver is checked using some exact travelling wave solutions of the system.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":"77 1","pages":"1-12"},"PeriodicalIF":1.5000,"publicationDate":"2016-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/6930758","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/6930758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

We develop error estimates of the semidiscrete and fully discrete formulations of a Fourier-Galerkin numerical scheme to approximate solutions of a coupled nonlinear Schrodinger-Benjamin-Ono system that describes the motion of two fluids with different densities under capillary-gravity waves in a deep water regime. The accuracy of the numerical solver is checked using some exact travelling wave solutions of the system.
应用于Schrödinger-Benjamin-Ono系统的隐式谱格式误差分析
我们开发了Fourier-Galerkin数值格式的半离散和全离散公式的误差估计,以近似描述在深水状态下毛细管重力波下两种不同密度流体运动的耦合非线性薛定谔-本杰明- ono系统的解。用系统的行波精确解检验了数值解的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信