{"title":"Recovery periods of event-related potentials indicating crossmodal interactions between the visual, auditory and tactile system","authors":"Marlene Hense, Boukje Habets, B. Roeder","doi":"10.1163/187847612X647478","DOIUrl":null,"url":null,"abstract":"In sequential unimodal stimulus designs the time it takes for an event-related potential (ERP)-amplitude to recover is often interpreted as a transient decrement in responsiveness of the generating cortical circuits. This effect has been called neural refractoriness, which is the larger the more similar the repeated stimuli are and thus indicates the degree of overlap between the neural generator systems activated by two sequential stimuli. We hypothesize that crossmodal refractoriness-effects in a crossmodal sequential design might be a good parameter to assess the ‘modality overlap’ in the involved neural generators and the degree of crossmodal interaction. In order to investigate crossmodal ERP refractory period effects we presented visual and auditory (Experiment 1) and visual and tactile stimuli (Experiment 2) with inter stimulus intervals of 1 and 2 s to adult participants. Participants had to detect rare auditory and visual stimuli. Both, intra- and crossmodal ISI effects for all modalities were found for three investigated ERP-deflections (P1, N1, P2). The topography of the crossmodal refractory period effect of the N1- and P2-deflections in Experiment 1 and of P1 and N1 in Experiment 2 of both modalities was similar to the corresponding intramodal refractory effect, yet more confined and crossmodal effects were generally weaker. The crossmodal refractory effect for the visual P1, however, had a distinct, less circumscribed topography with respect to the intramodal effect. These results suggest that ERP refractory effects might be a promising indicator of the neural correlates of crossmodal interactions.","PeriodicalId":49553,"journal":{"name":"Seeing and Perceiving","volume":"9 1","pages":"114-114"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/187847612X647478","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seeing and Perceiving","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/187847612X647478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In sequential unimodal stimulus designs the time it takes for an event-related potential (ERP)-amplitude to recover is often interpreted as a transient decrement in responsiveness of the generating cortical circuits. This effect has been called neural refractoriness, which is the larger the more similar the repeated stimuli are and thus indicates the degree of overlap between the neural generator systems activated by two sequential stimuli. We hypothesize that crossmodal refractoriness-effects in a crossmodal sequential design might be a good parameter to assess the ‘modality overlap’ in the involved neural generators and the degree of crossmodal interaction. In order to investigate crossmodal ERP refractory period effects we presented visual and auditory (Experiment 1) and visual and tactile stimuli (Experiment 2) with inter stimulus intervals of 1 and 2 s to adult participants. Participants had to detect rare auditory and visual stimuli. Both, intra- and crossmodal ISI effects for all modalities were found for three investigated ERP-deflections (P1, N1, P2). The topography of the crossmodal refractory period effect of the N1- and P2-deflections in Experiment 1 and of P1 and N1 in Experiment 2 of both modalities was similar to the corresponding intramodal refractory effect, yet more confined and crossmodal effects were generally weaker. The crossmodal refractory effect for the visual P1, however, had a distinct, less circumscribed topography with respect to the intramodal effect. These results suggest that ERP refractory effects might be a promising indicator of the neural correlates of crossmodal interactions.