C. Shimizu, H. Eleftherohorinou, V. Wright, Jihoon Kim, M. Alphonse, J. Perry, R. Cimaz, D. Burgner, N. Dahdah, L. Hoang, C. Khor, A. Salgado, A. Tremoulet, S. Davila, T. Kuijpers, M. Hibberd, Todd A. Johnson, A. Takahashi, T. Tsunoda, M. Kubo, Toshihiro Tanaka, Y. Onouchi, R. Yeung, L. Coin, M. Levin, J. Burns
{"title":"Genetic Variation in the SLC8A1 Calcium Signaling Pathway Is Associated With Susceptibility to Kawasaki Disease and Coronary Artery Abnormalities","authors":"C. Shimizu, H. Eleftherohorinou, V. Wright, Jihoon Kim, M. Alphonse, J. Perry, R. Cimaz, D. Burgner, N. Dahdah, L. Hoang, C. Khor, A. Salgado, A. Tremoulet, S. Davila, T. Kuijpers, M. Hibberd, Todd A. Johnson, A. Takahashi, T. Tsunoda, M. Kubo, Toshihiro Tanaka, Y. Onouchi, R. Yeung, L. Coin, M. Levin, J. Burns","doi":"10.1161/CIRCGENETICS.116.001533","DOIUrl":null,"url":null,"abstract":"Background—Kawasaki disease (KD) is an acute pediatric vasculitis in which host genetics influence both susceptibility to KD and the formation of coronary artery aneurysms. Variants discovered by genome-wide association studies and linkage studies only partially explain the influence of genetics on KD susceptibility. Methods and Results—To search for additional functional genetic variation, we performed pathway and gene stability analysis on a genome-wide association study data set. Pathway analysis using European genome-wide association study data identified 100 significantly associated pathways (P<5×10−4). Gene stability selection identified 116 single nucleotide polymorphisms in 26 genes that were responsible for driving the pathway associations, and gene ontology analysis demonstrated enrichment for calcium transport (P=1.05×10−4). Three single nucleotide polymorphisms in solute carrier family 8, member 1 (SLC8A1), a sodium/calcium exchanger encoding NCX1, were validated in an independent Japanese genome-wide association study data set (meta-analysis P=0.0001). Patients homozygous for the A (risk) allele of rs13017968 had higher rates of coronary artery abnormalities (P=0.029). NCX1, the protein encoded by SLC8A1, was expressed in spindle-shaped and inflammatory cells in the aneurysm wall. Increased intracellular calcium mobilization was observed in B cell lines from healthy controls carrying the risk allele. Conclusions—Pathway-based association analysis followed by gene stability selection proved to be a valuable tool for identifying risk alleles in a rare disease with complex genetics. The role of SLC8A1 polymorphisms in altering calcium flux in cells that mediate coronary artery damage in KD suggests that this pathway may be a therapeutic target and supports the study of calcineurin inhibitors in acute KD.","PeriodicalId":48940,"journal":{"name":"Circulation-Cardiovascular Genetics","volume":"9 1","pages":"559–568"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1161/CIRCGENETICS.116.001533","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation-Cardiovascular Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/CIRCGENETICS.116.001533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 41
Abstract
Background—Kawasaki disease (KD) is an acute pediatric vasculitis in which host genetics influence both susceptibility to KD and the formation of coronary artery aneurysms. Variants discovered by genome-wide association studies and linkage studies only partially explain the influence of genetics on KD susceptibility. Methods and Results—To search for additional functional genetic variation, we performed pathway and gene stability analysis on a genome-wide association study data set. Pathway analysis using European genome-wide association study data identified 100 significantly associated pathways (P<5×10−4). Gene stability selection identified 116 single nucleotide polymorphisms in 26 genes that were responsible for driving the pathway associations, and gene ontology analysis demonstrated enrichment for calcium transport (P=1.05×10−4). Three single nucleotide polymorphisms in solute carrier family 8, member 1 (SLC8A1), a sodium/calcium exchanger encoding NCX1, were validated in an independent Japanese genome-wide association study data set (meta-analysis P=0.0001). Patients homozygous for the A (risk) allele of rs13017968 had higher rates of coronary artery abnormalities (P=0.029). NCX1, the protein encoded by SLC8A1, was expressed in spindle-shaped and inflammatory cells in the aneurysm wall. Increased intracellular calcium mobilization was observed in B cell lines from healthy controls carrying the risk allele. Conclusions—Pathway-based association analysis followed by gene stability selection proved to be a valuable tool for identifying risk alleles in a rare disease with complex genetics. The role of SLC8A1 polymorphisms in altering calcium flux in cells that mediate coronary artery damage in KD suggests that this pathway may be a therapeutic target and supports the study of calcineurin inhibitors in acute KD.
期刊介绍:
Circulation: Genomic and Precision Medicine considers all types of original research articles, including studies conducted in human subjects, laboratory animals, in vitro, and in silico. Articles may include investigations of: clinical genetics as applied to the diagnosis and management of monogenic or oligogenic cardiovascular disorders; the molecular basis of complex cardiovascular disorders, including genome-wide association studies, exome and genome sequencing-based association studies, coding variant association studies, genetic linkage studies, epigenomics, transcriptomics, proteomics, metabolomics, and metagenomics; integration of electronic health record data or patient-generated data with any of the aforementioned approaches, including phenome-wide association studies, or with environmental or lifestyle factors; pharmacogenomics; regulation of gene expression; gene therapy and therapeutic genomic editing; systems biology approaches to the diagnosis and management of cardiovascular disorders; novel methods to perform any of the aforementioned studies; and novel applications of precision medicine. Above all, we seek studies with relevance to human cardiovascular biology and disease. Manuscripts are examined by the editorial staff and usually evaluated by expert reviewers assigned by the editors. Both clinical and basic articles will also be subject to statistical review, when appropriate. Provisional or final acceptance is based on originality, scientific content, and topical balance of the journal. Decisions are communicated by email, generally within six weeks. The editors will not discuss a decision about a manuscript over the phone. All rebuttals must be submitted in writing to the editorial office.