Nano-Catalytic Ozonation of 4-Nitrochlorobenzene in Aqueous Solutions

S. Tabatabaei, A. Mehrizad, P. Gharbani
{"title":"Nano-Catalytic Ozonation of 4-Nitrochlorobenzene in Aqueous Solutions","authors":"S. Tabatabaei, A. Mehrizad, P. Gharbani","doi":"10.1155/2012/696418","DOIUrl":null,"url":null,"abstract":"In this paper, efficiency of nano-ZnO particles on catalytic ozonation of 4-nitrochlorobenzene (4NCB) using semi-batch reactor has been studied at various pHs. During the catalytic ozonation, TOC and concentration of nitrate ions was monitored. Results indicate that degradation of 4NCB was improved by combination of nano-ZnO with ozone. The effect of ZnO particle size and pH are also examined. According to the results, concentration of 4NCB decreased with increasing of particle size from nanosized to microsized and pH from 3.0 to 9.0. Based on the results, it suggests radical hydroxyl does not affect on the degradation of 4NCB in catalytic ozonation, but the surface of catalyst plays main role. Kinetic studies showed degradation of 4NCB followed pseudo-first-order kinetic and maximum degradation rate was observed at pH=3.","PeriodicalId":11519,"journal":{"name":"E-journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/696418","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/696418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, efficiency of nano-ZnO particles on catalytic ozonation of 4-nitrochlorobenzene (4NCB) using semi-batch reactor has been studied at various pHs. During the catalytic ozonation, TOC and concentration of nitrate ions was monitored. Results indicate that degradation of 4NCB was improved by combination of nano-ZnO with ozone. The effect of ZnO particle size and pH are also examined. According to the results, concentration of 4NCB decreased with increasing of particle size from nanosized to microsized and pH from 3.0 to 9.0. Based on the results, it suggests radical hydroxyl does not affect on the degradation of 4NCB in catalytic ozonation, but the surface of catalyst plays main role. Kinetic studies showed degradation of 4NCB followed pseudo-first-order kinetic and maximum degradation rate was observed at pH=3.
水溶液中4-硝基氯苯的纳米催化臭氧化
本文研究了纳米氧化锌在不同ph值下在半间歇反应器中催化臭氧化4-硝基氯苯(4NCB)的效率。在催化臭氧化过程中,监测了TOC和硝酸盐离子浓度。结果表明,纳米氧化锌与臭氧复合可提高对4NCB的降解效果。考察了氧化锌粒度和pH值的影响。结果表明,随着粒径从纳米级到微米级,pH从3.0到9.0,4NCB的浓度逐渐降低。结果表明,自由基羟基对催化臭氧化过程中4NCB的降解没有影响,但催化剂表面起主要作用。动力学研究表明,4NCB的降解符合准一级动力学,pH=3时降解速率最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
E-journal of Chemistry
E-journal of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
自引率
0.00%
发文量
0
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信