Plasmonic Nanostructure for Enhanced Light Absorption in Ultrathin Silicon Solar Cells

Q3 Engineering
Jinna He, Chunzhen Fan, Junqiao Wang, Y. Cheng, P. Ding, E. Liang
{"title":"Plasmonic Nanostructure for Enhanced Light Absorption in Ultrathin Silicon Solar Cells","authors":"Jinna He, Chunzhen Fan, Junqiao Wang, Y. Cheng, P. Ding, E. Liang","doi":"10.1155/2012/592754","DOIUrl":null,"url":null,"abstract":"The performances of thin film solar cells are considerably limited by the low light absorption. Plasmonic nanostructures have been introduced in the thin film solar cells as a possible solution around this issue in recent years. Here, we propose a solar cell design, in which an ultrathin Si film covered by a periodic array of Ag strips is placed on a metallic nanograting substrate. The simulation results demonstrate that the designed structure gives rise to 170% light absorption enhancement over the full solar spectrum with respect to the bared Si thin film. The excited multiple resonant modes, including optical waveguide modes within the Si layer, localized surface plasmon resonance (LSPR) of Ag stripes, and surface plasmon polaritons (SPP) arising from the bottom grating, and the coupling effect between LSPR and SPP modes through an optimization of the array periods are considered to contribute to the significant absorption enhancement. This plasmonic solar cell design paves a promising way to increase light absorption for thin film solar cell applications.","PeriodicalId":7352,"journal":{"name":"Advances in Optoelectronics","volume":"2012 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/592754","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/592754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 12

Abstract

The performances of thin film solar cells are considerably limited by the low light absorption. Plasmonic nanostructures have been introduced in the thin film solar cells as a possible solution around this issue in recent years. Here, we propose a solar cell design, in which an ultrathin Si film covered by a periodic array of Ag strips is placed on a metallic nanograting substrate. The simulation results demonstrate that the designed structure gives rise to 170% light absorption enhancement over the full solar spectrum with respect to the bared Si thin film. The excited multiple resonant modes, including optical waveguide modes within the Si layer, localized surface plasmon resonance (LSPR) of Ag stripes, and surface plasmon polaritons (SPP) arising from the bottom grating, and the coupling effect between LSPR and SPP modes through an optimization of the array periods are considered to contribute to the significant absorption enhancement. This plasmonic solar cell design paves a promising way to increase light absorption for thin film solar cell applications.
超薄硅太阳能电池中增强光吸收的等离子体纳米结构
薄膜太阳能电池的光吸收率低,大大限制了其性能。近年来,等离子体纳米结构作为一种可能的解决方案被引入到薄膜太阳能电池中。在这里,我们提出了一种太阳能电池设计,其中超薄硅薄膜被银条的周期性阵列覆盖在金属纳米光栅衬底上。仿真结果表明,与裸硅薄膜相比,所设计的结构在全太阳光谱上的光吸收增强了170%。硅层内的光波导模式、银条纹的局部表面等离子体共振(LSPR)和底部光栅产生的表面等离子体极化子(SPP)等激发的多重谐振模式,以及通过优化阵列周期产生的LSPR和SPP模式之间的耦合效应,被认为是显著增强吸收的原因。这种等离子体太阳能电池的设计为增加薄膜太阳能电池的光吸收铺平了一条有前途的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Optoelectronics
Advances in Optoelectronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Advances in OptoElectronics is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of optoelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信