Linear Stability Analysis of Solitons Governed by the 2D Complex Cubic-Quintic Ginzburg-Landau Equation

Emily Gottry
{"title":"Linear Stability Analysis of Solitons Governed by the 2D Complex Cubic-Quintic Ginzburg-Landau Equation","authors":"Emily Gottry","doi":"10.1137/23s1548116","DOIUrl":null,"url":null,"abstract":". We used the singular value decomposition to construct a low-dimensional model that qualitatively describes the behavior and dynamics of optical solitons governed by the complex cubic-quintic Ginzburg-Landau equation in two spatial dimensions. With this model, it was found that a single soliton destabilizes and transitions into a double-soliton configuration through an intermediate periodic phase as the gain increases. Linear stability analysis then revealed that a Hopf bifurcation occurs at several critical gain values corresponding to the destabilization of the single and double solitons.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/23s1548116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. We used the singular value decomposition to construct a low-dimensional model that qualitatively describes the behavior and dynamics of optical solitons governed by the complex cubic-quintic Ginzburg-Landau equation in two spatial dimensions. With this model, it was found that a single soliton destabilizes and transitions into a double-soliton configuration through an intermediate periodic phase as the gain increases. Linear stability analysis then revealed that a Hopf bifurcation occurs at several critical gain values corresponding to the destabilization of the single and double solitons.
二维复三次-五次金兹堡-朗道方程控制孤子的线性稳定性分析
. 本文利用奇异值分解构造了一个低维模型,定性地描述了在两个空间维度上由复杂的三次五次金兹堡-朗道方程控制的光学孤子的行为和动力学。利用该模型,发现随着增益的增加,单孤子不稳定并通过中间周期相位转变为双孤子构型。线性稳定性分析表明,Hopf分岔发生在与单孤子和双孤子失稳相对应的几个临界增益值处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信