The Performance of Active Coated Nanoparticles Based on Quantum-Dot Gain Media

Q3 Engineering
S. Campbell, R. Ziolkowski
{"title":"The Performance of Active Coated Nanoparticles Based on Quantum-Dot Gain Media","authors":"S. Campbell, R. Ziolkowski","doi":"10.1155/2012/368786","DOIUrl":null,"url":null,"abstract":"Quantum-dots (QDs) provide an exciting option for the gain media incorporated in active coated nanoparticles (CNPs) because they possess large gain coefficients resulting from their extreme confinement effects. The optical properties of core/shell QDs can be tuned by changing the relative size of the core/shell, that is, by effectively changing its band gap structure. Similarly, the resonance of a CNP can be adjusted \nby changing the relative sizes of its layers. It is demonstrated here that by optimally locating the QDs inside a resonant CNP structure it is possible to greatly enhance the intrinsic amplifying behavior of the combined QD-CNP system.","PeriodicalId":7352,"journal":{"name":"Advances in Optoelectronics","volume":"2012 1","pages":"368786"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/368786","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/368786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 15

Abstract

Quantum-dots (QDs) provide an exciting option for the gain media incorporated in active coated nanoparticles (CNPs) because they possess large gain coefficients resulting from their extreme confinement effects. The optical properties of core/shell QDs can be tuned by changing the relative size of the core/shell, that is, by effectively changing its band gap structure. Similarly, the resonance of a CNP can be adjusted by changing the relative sizes of its layers. It is demonstrated here that by optimally locating the QDs inside a resonant CNP structure it is possible to greatly enhance the intrinsic amplifying behavior of the combined QD-CNP system.
基于量子点增益介质的活性包覆纳米颗粒性能研究
量子点(QDs)为活性包覆纳米粒子(CNPs)的增益介质提供了一个令人兴奋的选择,因为它们具有巨大的增益系数,导致它们的极端限制效应。通过改变核/壳的相对尺寸,即有效地改变其带隙结构,可以调节核/壳量子点的光学性质。同样,CNP的共振可以通过改变其层的相对大小来调节。本文证明,通过在共振CNP结构内优化定位量子点,可以大大增强组合QD-CNP系统的固有放大行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Optoelectronics
Advances in Optoelectronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Advances in OptoElectronics is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of optoelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信