{"title":"Spectral Touching Points in Two-Dimensional Materials","authors":"Andrea R. Wynn","doi":"10.1137/21s143889x","DOIUrl":null,"url":null,"abstract":"A two-dimensional (2D) material is a crystalline material consisting of a single layer of atoms. These materials are used in many applications including photovoltaics, semiconductors, electrodes, and water purification. These materials’ atomic structures can be represented as a discrete infinite periodic graph. Using Floquet-Bloch theory, the spectrum of the Schrödinger operator can be calculated on these infinite graphical representations by computing the eigenvalues of the magnetic flux Schrödinger operator on a fundamental domain for every possible value of magnetic flux. Previous researchers have conjectured a relationship between the special physical properties of one 2D material, graphene, and the Dirac conical points which appear in the spectrum of its Schrödinger operator. However, graphene was the only material studied with respect to these Dirac conical points. The existence of spectral touching points in different two-dimensional materials is proved, including muscovite, quartz, and transition metal oxides, under certain conditions on electric potential. The spectral touching points found in transition metal oxides are not the Dirac conical points found in graphene, but rather a previously unknown type of spectral touching point, named the mesa touching point, which appears in the Schrödinger operator for transition metal oxides under certain conditions.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21s143889x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A two-dimensional (2D) material is a crystalline material consisting of a single layer of atoms. These materials are used in many applications including photovoltaics, semiconductors, electrodes, and water purification. These materials’ atomic structures can be represented as a discrete infinite periodic graph. Using Floquet-Bloch theory, the spectrum of the Schrödinger operator can be calculated on these infinite graphical representations by computing the eigenvalues of the magnetic flux Schrödinger operator on a fundamental domain for every possible value of magnetic flux. Previous researchers have conjectured a relationship between the special physical properties of one 2D material, graphene, and the Dirac conical points which appear in the spectrum of its Schrödinger operator. However, graphene was the only material studied with respect to these Dirac conical points. The existence of spectral touching points in different two-dimensional materials is proved, including muscovite, quartz, and transition metal oxides, under certain conditions on electric potential. The spectral touching points found in transition metal oxides are not the Dirac conical points found in graphene, but rather a previously unknown type of spectral touching point, named the mesa touching point, which appears in the Schrödinger operator for transition metal oxides under certain conditions.