Christian Bayer, M. Eigel, Leon Sallandt, Philipp Trunschke
{"title":"Pricing high-dimensional Bermudan options with hierarchical tensor formats","authors":"Christian Bayer, M. Eigel, Leon Sallandt, Philipp Trunschke","doi":"10.1137/21m1402170","DOIUrl":null,"url":null,"abstract":"An efficient compression technique based on hierarchical tensors for popular option pricing methods is presented. It is shown that the\"curse of dimensionality\"can be alleviated for the computation of Bermudan option prices with the Monte Carlo least-squares approach as well as the dual martingale method, both using high-dimensional tensorized polynomial expansions. This discretization allows for a simple and computationally cheap evaluation of conditional expectations. Complexity estimates are provided as well as a description of the optimization procedures in the tensor train format. Numerical experiments illustrate the favourable accuracy of the proposed methods. The dynamical programming method yields results comparable to recent Neural Network based methods.","PeriodicalId":48880,"journal":{"name":"SIAM Journal on Financial Mathematics","volume":"abs/2103.01934 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Financial Mathematics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1137/21m1402170","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 10
Abstract
An efficient compression technique based on hierarchical tensors for popular option pricing methods is presented. It is shown that the"curse of dimensionality"can be alleviated for the computation of Bermudan option prices with the Monte Carlo least-squares approach as well as the dual martingale method, both using high-dimensional tensorized polynomial expansions. This discretization allows for a simple and computationally cheap evaluation of conditional expectations. Complexity estimates are provided as well as a description of the optimization procedures in the tensor train format. Numerical experiments illustrate the favourable accuracy of the proposed methods. The dynamical programming method yields results comparable to recent Neural Network based methods.
期刊介绍:
SIAM Journal on Financial Mathematics (SIFIN) addresses theoretical developments in financial mathematics as well as breakthroughs in the computational challenges they encompass. The journal provides a common platform for scholars interested in the mathematical theory of finance as well as practitioners interested in rigorous treatments of the scientific computational issues related to implementation. On the theoretical side, the journal publishes articles with demonstrable mathematical developments motivated by models of modern finance. On the computational side, it publishes articles introducing new methods and algorithms representing significant (as opposed to incremental) improvements on the existing state of affairs of modern numerical implementations of applied financial mathematics.