Formation of GaN-Porous Structures Using Photo-Assisted Electrochemical Process in Back-Side Illumination Mode

A. Watanabe, Y. Kumazaki, Zenji Yatabe, Taketomo Sato
{"title":"Formation of GaN-Porous Structures Using Photo-Assisted Electrochemical Process in Back-Side Illumination Mode","authors":"A. Watanabe, Y. Kumazaki, Zenji Yatabe, Taketomo Sato","doi":"10.1149/2.0031505EEL","DOIUrl":null,"url":null,"abstract":"We investigated the structural features of gallium-nitride-porous structures formed using the photo-assisted electrochemical process in the back-side illumination (BSI) mode. The pore diameter and depth were strongly affected by the direction of illumination, where higher controllability was achieved compared with front-side illumination. The spectroscopic measurements revealed that illumination with photon energy below the bulk bandgap plays an important role in pore formation. We propose a formation model by considering the Franz-Keldysh effect that can consistently explain the obtained experimental data in which anodic etching occurs only at the pore tips under the high electric field induced in the depletion region.","PeriodicalId":11470,"journal":{"name":"ECS Electrochemistry Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1149/2.0031505EEL","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Electrochemistry Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2.0031505EEL","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We investigated the structural features of gallium-nitride-porous structures formed using the photo-assisted electrochemical process in the back-side illumination (BSI) mode. The pore diameter and depth were strongly affected by the direction of illumination, where higher controllability was achieved compared with front-side illumination. The spectroscopic measurements revealed that illumination with photon energy below the bulk bandgap plays an important role in pore formation. We propose a formation model by considering the Franz-Keldysh effect that can consistently explain the obtained experimental data in which anodic etching occurs only at the pore tips under the high electric field induced in the depletion region.
背侧照明模式下光辅助电化学制备gan多孔结构的研究
研究了光辅助电化学过程在背侧照明(BSI)模式下形成的氮化镓多孔结构的结构特征。孔径和深度受光照方向的影响较大,与正面光照相比,光照方向的可控性更高。光谱测量结果表明,光子能量低于体带隙的照明在孔隙形成中起重要作用。我们提出了一个考虑Franz-Keldysh效应的地层模型,该模型可以一致地解释所获得的实验数据,其中阳极腐蚀仅发生在耗尽区诱导的高电场下的孔隙尖端。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ECS Electrochemistry Letters
ECS Electrochemistry Letters ELECTROCHEMISTRY-MATERIALS SCIENCE, MULTIDISCIPLINARY
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信