Analytical Solutions of the Susceptible-Infected-Virus (SIV) Model

Emily MacIndoe
{"title":"Analytical Solutions of the Susceptible-Infected-Virus (SIV) Model","authors":"Emily MacIndoe","doi":"10.1137/18S017545","DOIUrl":null,"url":null,"abstract":"The Susceptible-Infected-Virus (SIV) model is a compartmental model to describe within-host dynamics of a viral infection. We apply the SIV model to the human immunodeficiency virus (HIV); in particular, we present analytical solutions to two versions of the model. The first version includes only terms related to the susceptible cell-virus particle interaction and virus production, while the second includes those terms in addition to the infected cell death rate. An analytical solution, although more challenging and time-consuming than numerical methods, has the advantage of giving exact, rather than approximate, results. These results contribute to our understanding of virus dynamics and could be used to develop better treatment options. The approach used to solve each model involved first isolating one of the dependent variables, that is, deriving an equation that involves only one of the variables and its derivatives. Next, various substitutions were used to bring the equation to a more easily solvable form. For the first model, an exact solution is obtained in the form of an implicit equation. For the second model, we give an analytical solution generated by an iterative method.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/18S017545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Susceptible-Infected-Virus (SIV) model is a compartmental model to describe within-host dynamics of a viral infection. We apply the SIV model to the human immunodeficiency virus (HIV); in particular, we present analytical solutions to two versions of the model. The first version includes only terms related to the susceptible cell-virus particle interaction and virus production, while the second includes those terms in addition to the infected cell death rate. An analytical solution, although more challenging and time-consuming than numerical methods, has the advantage of giving exact, rather than approximate, results. These results contribute to our understanding of virus dynamics and could be used to develop better treatment options. The approach used to solve each model involved first isolating one of the dependent variables, that is, deriving an equation that involves only one of the variables and its derivatives. Next, various substitutions were used to bring the equation to a more easily solvable form. For the first model, an exact solution is obtained in the form of an implicit equation. For the second model, we give an analytical solution generated by an iterative method.
易感感染病毒(SIV)模型的解析解
易感感染病毒(SIV)模型是一种描述病毒感染在宿主内动态的区隔模型。我们将SIV模型应用于人类免疫缺陷病毒(HIV);特别地,我们提出了模型的两个版本的解析解。第一个版本只包括与易感细胞-病毒颗粒相互作用和病毒产生有关的术语,而第二个版本除了包括受感染细胞死亡率之外还包括这些术语。解析解虽然比数值方法更具挑战性和耗时,但它的优点是能给出精确的结果,而不是近似的结果。这些结果有助于我们对病毒动力学的理解,并可用于开发更好的治疗方案。用于求解每个模型的方法首先涉及分离一个因变量,也就是说,推导一个只涉及一个变量及其导数的方程。接下来,用各种替换把方程变成更容易解的形式。对于第一个模型,以隐式方程的形式得到了精确解。对于第二个模型,我们给出了用迭代法生成的解析解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信