Jeerapan Tientong, Casey R. Thurber, N. D'Souza, A. Mohamed, T. Golden
{"title":"Influence of Bath Composition at Acidic pH on Electrodeposition of Nickel-Layered Silicate Nanocomposites for Corrosion Protection","authors":"Jeerapan Tientong, Casey R. Thurber, N. D'Souza, A. Mohamed, T. Golden","doi":"10.1155/2013/853869","DOIUrl":null,"url":null,"abstract":"Nickel-layered silicates were electrochemically deposited from acidic bath solutions. Citrate was used as a ligand to stabilize nickel (II) ions in the plating solution. The silicate, montmorillonite, was exfoliated by stirring in aqueous solution over 24 hours. The plating solutions were analyzed for zeta-potential, particle size, viscosity, and conductivity to investigate the effects of the composition at various pHs. The solution particles at pH 2.5 (−22.2 mV) and pH 3.0 (−21.9 mV) were more stable than at pH 1.6 (−10.1 mV) as shown by zeta-potential analysis of the nickel-citrate-montmorillonite plating solution. <path id=\"x1D438\" d=\"M609 650l-19 -162l-30 -2q2 69 -14 94q-9 18 -28.5 26t-74.5 8h-88q-30 0 -37 -6.5t-12 -36.5l-41 -212h103q48 0 69 5.5t32 19t26 50.5h29l-40 -198h-30q2 58 -11.5 70.5t-85.5 12.5h-99l-30 -167q-17 -87 3 -101q18 -15 111 -15q59 0 89 7t54 27q8 7 15.5 16t16 21.5\nl14 20.5t15 23.5t13.5 21.5l29 -10q-52 -129 -71 -163h-500l6 28q66 4 83 17.5t28 73.5l77 409q11 61 -0.5 75.5t-78.5 18.5l10 28h467z\" /> <path id=\"x63\" d=\"M390 111l17 -21q-34 -45 -80 -73.5t-89 -28.5q-91 0 -146 62t-55 147q0 118 101 195q74 57 149 57h1q59 0 90 -27q16 -14 16 -30q0 -15 -12 -29t-21 -14q-8 0 -19 11q-44 41 -101 41q-52 0 -87.5 -42.5t-35.5 -117.5q0 -49 15 -87t39 -58t49 -30t48 -10q33 0 60.5 12\nt60.5 43z\" /> for the films ranged from −0.32 to −0.39 V with varying pH from 1.6 to 3.0. The films were immersed in 3.5% NaCl and the open circuit potential monitored for one month. The coatings deposited at pH 3.0 were stable 13 days longer in the salt solution than the other coatings. X-ray diffraction showed a change in the (111)/(200) ratio for the coatings at the various pHs. The scanning electron microscopy and hardness results also support that the electrodeposition of nickel-montmorillonite at pH 3.0 (234 GPa) had improved hardness and morphology compared to pH 2.5 (174 GPa) and pH 1.6 (147 GPa).","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":"2013 1","pages":"1-8"},"PeriodicalIF":2.3000,"publicationDate":"2013-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/853869","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/853869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 14
Abstract
Nickel-layered silicates were electrochemically deposited from acidic bath solutions. Citrate was used as a ligand to stabilize nickel (II) ions in the plating solution. The silicate, montmorillonite, was exfoliated by stirring in aqueous solution over 24 hours. The plating solutions were analyzed for zeta-potential, particle size, viscosity, and conductivity to investigate the effects of the composition at various pHs. The solution particles at pH 2.5 (−22.2 mV) and pH 3.0 (−21.9 mV) were more stable than at pH 1.6 (−10.1 mV) as shown by zeta-potential analysis of the nickel-citrate-montmorillonite plating solution. for the films ranged from −0.32 to −0.39 V with varying pH from 1.6 to 3.0. The films were immersed in 3.5% NaCl and the open circuit potential monitored for one month. The coatings deposited at pH 3.0 were stable 13 days longer in the salt solution than the other coatings. X-ray diffraction showed a change in the (111)/(200) ratio for the coatings at the various pHs. The scanning electron microscopy and hardness results also support that the electrodeposition of nickel-montmorillonite at pH 3.0 (234 GPa) had improved hardness and morphology compared to pH 2.5 (174 GPa) and pH 1.6 (147 GPa).