FUNCTION AND MECHANISM OF ORGANIC ANION EXUDATION FROM PLANT ROOTS.

P. Ryan, E. Delhaize, D. Jones
{"title":"FUNCTION AND MECHANISM OF ORGANIC ANION EXUDATION FROM PLANT ROOTS.","authors":"P. Ryan, E. Delhaize, D. Jones","doi":"10.1146/ANNUREV.ARPLANT.52.1.527","DOIUrl":null,"url":null,"abstract":"The rhizosphere is the zone of soil immediately surrounding plant roots that is modified by root activity. In this critical zone, plants perceive and respond to their environment. As a consequence of normal growth and development, a large range of organic and inorganic substances are exchanged between the root and soil, which inevitably leads to changes in the biochemical and physical properties of the rhizosphere. Plants also modify their rhizosphere in response to certain environmental signals and stresses. Organic anions are commonly detected in this region, and their exudation from plant roots has now been associated with nutrient deficiencies and inorganic ion stresses. This review summarizes recent developments in the understanding of the function, mechanism, and regulation of organic anion exudation from roots. The benefits that plants derive from the presence of organic anions in the rhizosphere are described and the potential for biotechnology to increase organic anion exudation is highlighted.","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"52 1","pages":"527-560"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV.ARPLANT.52.1.527","citationCount":"1342","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant physiology and plant molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/ANNUREV.ARPLANT.52.1.527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1342

Abstract

The rhizosphere is the zone of soil immediately surrounding plant roots that is modified by root activity. In this critical zone, plants perceive and respond to their environment. As a consequence of normal growth and development, a large range of organic and inorganic substances are exchanged between the root and soil, which inevitably leads to changes in the biochemical and physical properties of the rhizosphere. Plants also modify their rhizosphere in response to certain environmental signals and stresses. Organic anions are commonly detected in this region, and their exudation from plant roots has now been associated with nutrient deficiencies and inorganic ion stresses. This review summarizes recent developments in the understanding of the function, mechanism, and regulation of organic anion exudation from roots. The benefits that plants derive from the presence of organic anions in the rhizosphere are described and the potential for biotechnology to increase organic anion exudation is highlighted.
植物根系有机阴离子分泌的功能与机制。
根际是植物根系周围的土壤区域,受根系活动的影响。在这个关键地带,植物感知并对环境做出反应。在正常生长发育过程中,根与土壤之间大量的有机和无机物质的交换,必然导致根际生物化学和物理性质的变化。植物也会改变它们的根际以响应特定的环境信号和压力。有机阴离子在该地区普遍存在,它们从植物根部渗出,现在与营养缺乏和无机离子胁迫有关。本文综述了根系有机阴离子分泌的功能、机制和调控方面的最新进展。植物从根际有机阴离子的存在中获得的好处被描述,并强调了生物技术增加有机阴离子分泌的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信