Bubble-Enriched Least-Squares Finite Element Method for Transient Advective Transport

Rajeev Kumar, B. Dennis
{"title":"Bubble-Enriched Least-Squares Finite Element Method for Transient Advective Transport","authors":"Rajeev Kumar, B. Dennis","doi":"10.1155/2008/267454","DOIUrl":null,"url":null,"abstract":"The least-squares finite element method (LSFEM) has received increasing attention in recent years due to advantages over the Galerkin finite element method (GFEM). The method leads to a minimization problem in the -norm and thus results in a symmetric and positive definite matrix, even for first-order differential equations. In addition, the method contains an implicit streamline upwinding mechanism that prevents the appearance of oscillations that are characteristic of the Galerkin method. Thus, the least-squares approach does not require explicit stabilization and the associated stabilization parameters required by the Galerkin method. A new approach, the bubble enriched least-squares finite element method (BELSFEM), is presented and compared with the classical LSFEM. The BELSFEM requires a space-time element formulation and employs bubble functions in space and time to increase the accuracy of the finite element solution without degrading computational performance. We apply the BELSFEM and classical least-squares finite element methods to benchmark problems for 1D and 2D linear transport. The accuracy and performance are compared.","PeriodicalId":30100,"journal":{"name":"Differential Equations and Nonlinear Mechanics","volume":"2008 1","pages":"267454"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2008/267454","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Nonlinear Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2008/267454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The least-squares finite element method (LSFEM) has received increasing attention in recent years due to advantages over the Galerkin finite element method (GFEM). The method leads to a minimization problem in the -norm and thus results in a symmetric and positive definite matrix, even for first-order differential equations. In addition, the method contains an implicit streamline upwinding mechanism that prevents the appearance of oscillations that are characteristic of the Galerkin method. Thus, the least-squares approach does not require explicit stabilization and the associated stabilization parameters required by the Galerkin method. A new approach, the bubble enriched least-squares finite element method (BELSFEM), is presented and compared with the classical LSFEM. The BELSFEM requires a space-time element formulation and employs bubble functions in space and time to increase the accuracy of the finite element solution without degrading computational performance. We apply the BELSFEM and classical least-squares finite element methods to benchmark problems for 1D and 2D linear transport. The accuracy and performance are compared.
瞬态平流输运的富气泡最小二乘有限元法
最小二乘有限元法(LSFEM)由于其相对于伽辽金有限元法(GFEM)的优势,近年来受到越来越多的关注。该方法导致-范数的最小化问题,从而得到对称的正定矩阵,即使对于一阶微分方程也是如此。此外,该方法包含一个隐式流线上绕机制,以防止振荡的出现,这是伽辽金方法的特征。因此,最小二乘方法不需要伽辽金方法所需的显式稳定化和相关的稳定化参数。提出了一种新的方法——气泡丰富最小二乘有限元法(BELSFEM),并与经典的LSFEM进行了比较。BELSFEM需要一个时空单元公式,并在空间和时间上使用气泡函数,在不降低计算性能的情况下提高有限元解的精度。我们将BELSFEM和经典最小二乘有限元方法应用于一维和二维线性运输的基准问题。比较了算法的精度和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信