All-Optical Surface Micropatterning by Electric Field Intensity Gradient

Q3 Engineering
U. Gertners, J. Teteris
{"title":"All-Optical Surface Micropatterning by Electric Field Intensity Gradient","authors":"U. Gertners, J. Teteris","doi":"10.1155/2015/917029","DOIUrl":null,"url":null,"abstract":"In this report an all-optical photo-induced formation of surface relief gratings is shown. For the surface patterning of As2S3 and As4S1.5Se4.5 films a direct holographic recording setup with a 532 nm wavelength Nd:YAG CW laser light was used. Our investigations have shown that the light-induced mass transfer process strongly depends on the material itself and on the polarization of the light. It has been shown that an electric field intensity gradient has to be obtained to achieve a direct patterning. The evolution of a surface relief in relation to recording parameters and thickness of the sample has been investigated in detail.","PeriodicalId":7352,"journal":{"name":"Advances in Optoelectronics","volume":"2015 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/917029","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/917029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

In this report an all-optical photo-induced formation of surface relief gratings is shown. For the surface patterning of As2S3 and As4S1.5Se4.5 films a direct holographic recording setup with a 532 nm wavelength Nd:YAG CW laser light was used. Our investigations have shown that the light-induced mass transfer process strongly depends on the material itself and on the polarization of the light. It has been shown that an electric field intensity gradient has to be obtained to achieve a direct patterning. The evolution of a surface relief in relation to recording parameters and thickness of the sample has been investigated in detail.
电场强度梯度的全光表面微图像化
在这个报告中,显示了全光学光诱导的表面浮雕光栅的形成。采用532 nm波长Nd:YAG连续激光直接全息记录装置对As2S3和as4s1.5 - se4.5薄膜进行表面图像化。我们的研究表明,光致传质过程在很大程度上取决于材料本身和光的偏振。已经证明,要实现直接的图案化,必须获得电场强度梯度。详细研究了表面起伏与记录参数和样品厚度的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Optoelectronics
Advances in Optoelectronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Advances in OptoElectronics is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of optoelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信