Yong Chen, Yiyong Huang, Xiaoqian Chen, Dengpeng Hu
{"title":"Axisymmetric Wave Propagation in Uniform Gas Flow Confined by Rigid-Walled Pipeline","authors":"Yong Chen, Yiyong Huang, Xiaoqian Chen, Dengpeng Hu","doi":"10.1142/S0218396X14500143","DOIUrl":null,"url":null,"abstract":"This paper deals with the axisymmetric acoustic wave propagating along the perfect gas in the presence of a uniform flow confined by a rigid-walled pipeline. Under the linear acoustic assumption, mathematical formulation of wave propagation is deduced from the conservations of mass, momentum and energy. Meanwhile a method based on the Fourier–Bessel theory is introduced to solve the problem. Comprehensive comparisons of the phase velocity and wave attenuation between the non-isentropic and isentropic acoustic waves are provided. Meanwhile the effects of flow profile, acoustic frequency, and pipeline radius are analyzed.","PeriodicalId":54860,"journal":{"name":"Journal of Computational Acoustics","volume":"22 1","pages":"1450014"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S0218396X14500143","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218396X14500143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6
Abstract
This paper deals with the axisymmetric acoustic wave propagating along the perfect gas in the presence of a uniform flow confined by a rigid-walled pipeline. Under the linear acoustic assumption, mathematical formulation of wave propagation is deduced from the conservations of mass, momentum and energy. Meanwhile a method based on the Fourier–Bessel theory is introduced to solve the problem. Comprehensive comparisons of the phase velocity and wave attenuation between the non-isentropic and isentropic acoustic waves are provided. Meanwhile the effects of flow profile, acoustic frequency, and pipeline radius are analyzed.
期刊介绍:
Currently known as Journal of Theoretical and Computational Acoustics (JTCA).The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics. Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations. The journal strives to be flexible in the type of high quality papers it publishes and their format. Equally desirable are Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational acoustics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research in which other than strictly computational arguments may be important in establishing a basis for further developments. Tutorial review papers, covering some of the important issues in Computational Mathematical Methods, Scientific Computing, and their applications. Short notes, which present specific new results and techniques in a brief communication. The journal will occasionally publish significant contributions which are larger than the usual format for regular papers. Special issues which report results of high quality workshops in related areas and monographs of significant contributions in the Series of Computational Acoustics will also be published.