Yiqiu Wang, Shangdi Yu, Laxman Dhulipala, Yan Gu, Julian Shun
{"title":"GeoGraph: A Framework for Graph Processing on Geometric Data","authors":"Yiqiu Wang, Shangdi Yu, Laxman Dhulipala, Yan Gu, Julian Shun","doi":"10.1145/3469379.3469384","DOIUrl":null,"url":null,"abstract":"In many applications of graph processing, the input data is often generated from an underlying geometric point data set. However, existing high-performance graph processing frameworks assume that the input data is given as a graph. Therefore, to use these frameworks, the user must write or use external programs based on computational geometry algorithms to convert their point data set to a graph, which requires more programming effort and can also lead to performance degradation. In this paper, we present our ongoing work on the GeoGraph framework for shared-memory multicore machines, which seamlessly supports routines for parallel geometric graph construction and parallel graph processing within the same environment. GeoGraph supports graph construction based on k-nearest neighbors, Delaunay triangulation, and β-skeleton graphs. It can then pass these generated graphs to over 25 graph algorithms. GeoGraph contains highperformance parallel primitives and algorithms implemented in C++, and includes a Python interface. We present four examples of using GeoGraph, and some experimental results showing good parallel speedups and improvements over the Higra library. We conclude with a vision of future directions for research in bridging graph and geometric data processing.","PeriodicalId":38935,"journal":{"name":"Operating Systems Review (ACM)","volume":"55 1","pages":"38-46"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3469379.3469384","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operating Systems Review (ACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469379.3469384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 7
Abstract
In many applications of graph processing, the input data is often generated from an underlying geometric point data set. However, existing high-performance graph processing frameworks assume that the input data is given as a graph. Therefore, to use these frameworks, the user must write or use external programs based on computational geometry algorithms to convert their point data set to a graph, which requires more programming effort and can also lead to performance degradation. In this paper, we present our ongoing work on the GeoGraph framework for shared-memory multicore machines, which seamlessly supports routines for parallel geometric graph construction and parallel graph processing within the same environment. GeoGraph supports graph construction based on k-nearest neighbors, Delaunay triangulation, and β-skeleton graphs. It can then pass these generated graphs to over 25 graph algorithms. GeoGraph contains highperformance parallel primitives and algorithms implemented in C++, and includes a Python interface. We present four examples of using GeoGraph, and some experimental results showing good parallel speedups and improvements over the Higra library. We conclude with a vision of future directions for research in bridging graph and geometric data processing.
期刊介绍:
Operating Systems Review (OSR) is a publication of the ACM Special Interest Group on Operating Systems (SIGOPS), whose scope of interest includes: computer operating systems and architecture for multiprogramming, multiprocessing, and time sharing; resource management; evaluation and simulation; reliability, integrity, and security of data; communications among computing processors; and computer system modeling and analysis.