The Easy Path Wavelet Transform: A New Adaptive Wavelet Transform for Sparse Representation of Two-Dimensional Data

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
G. Plonka
{"title":"The Easy Path Wavelet Transform: A New Adaptive Wavelet Transform for Sparse Representation of Two-Dimensional Data","authors":"G. Plonka","doi":"10.1137/080719248","DOIUrl":null,"url":null,"abstract":"We introduce a new locally adaptive wavelet transform, called easy path wavelet transform (EPWT), that works along pathways through the array of function values and exploits the local correlations of the data in a simple appropriate manner. The usual discrete orthogonal and biorthogonal wavelet transform can be formulated in this approach. The EPWT can be incorporated into a multiresolution analysis structure and generates data dependent scaling spaces and wavelet spaces. Numerical results show the enormous efficiency of the EPWT for representation of two-dimensional data.","PeriodicalId":49791,"journal":{"name":"Multiscale Modeling & Simulation","volume":"7 1","pages":"1474-1496"},"PeriodicalIF":1.9000,"publicationDate":"2009-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1137/080719248","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Modeling & Simulation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/080719248","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 86

Abstract

We introduce a new locally adaptive wavelet transform, called easy path wavelet transform (EPWT), that works along pathways through the array of function values and exploits the local correlations of the data in a simple appropriate manner. The usual discrete orthogonal and biorthogonal wavelet transform can be formulated in this approach. The EPWT can be incorporated into a multiresolution analysis structure and generates data dependent scaling spaces and wavelet spaces. Numerical results show the enormous efficiency of the EPWT for representation of two-dimensional data.
简单路径小波变换:二维数据稀疏表示的一种新的自适应小波变换
我们引入了一种新的局部自适应小波变换,称为易路径小波变换(EPWT),它沿着函数值数组的路径工作,并以一种简单适当的方式利用数据的局部相关性。常用的离散正交和双正交小波变换可以用这种方法表示。EPWT可以集成到多分辨率分析结构中,并生成与数据相关的尺度空间和小波空间。数值结果表明,EPWT对二维数据的表示具有极大的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Multiscale Modeling & Simulation
Multiscale Modeling & Simulation 数学-数学跨学科应用
CiteScore
2.80
自引率
6.20%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Centered around multiscale phenomena, Multiscale Modeling and Simulation (MMS) is an interdisciplinary journal focusing on the fundamental modeling and computational principles underlying various multiscale methods. By its nature, multiscale modeling is highly interdisciplinary, with developments occurring independently across fields. A broad range of scientific and engineering problems involve multiple scales. Traditional monoscale approaches have proven to be inadequate, even with the largest supercomputers, because of the range of scales and the prohibitively large number of variables involved. Thus, there is a growing need to develop systematic modeling and simulation approaches for multiscale problems. MMS will provide a single broad, authoritative source for results in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信