Applications of real-time chemical stratigraphy in support of the safe drilling of HPHT wells: examples from the Shearwater Field, Central North Sea, UK
{"title":"Applications of real-time chemical stratigraphy in support of the safe drilling of HPHT wells: examples from the Shearwater Field, Central North Sea, UK","authors":"D. Atkin, M. Vieira, B. Taylor","doi":"10.1144/petgeo2019-081","DOIUrl":null,"url":null,"abstract":"X-ray fluorescence (XRF) data from a series of high-pressure–high-temperature (HPHT) wells drilled in the Shearwater Field, UK Continental Shelf (UKCS) are presented. These data comprise a total of 789 samples across a series of eight study wells. Chemical stratigraphy was utilized in conjunction with other geological data (i.e. well logs, ditch cutting descriptions and biostratigraphic analyses) to aid real-time stratigraphic placement. Systematic changes in geochemical composition were identified and used to build a chemostratigraphic zonation to aid delineation of lithostratigraphic boundaries. The application of chemical stratigraphy provided a valuable source of data, particularly through critical ‘drill-in-liner’ sections that are devoid of conventional logging while drilling (LWD) data. The identification of key geochemical zones and provision of a synthetic gamma-ray (Synth GR) profile were utilized in the placement of key casing points and identification of challenging top reservoir picks (Fulmar Formation). These data also served as a backup during LWD tool failure resulting from excessive temperatures. The successive addition of geochemical data accumulated with each well-site exercise permitted continued refinement of the zonation framework, with derived Synth GR profiles exhibiting an extremely close relationship with subsequent wireline logs. Chemical stratigraphic data are shown to be robust and repeatable within the Shearwater Field, enabling close stratigraphic control through critical sections, whilst also providing a low-cost backup in the event of conventional logging tool failures.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1144/petgeo2019-081","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2019-081","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
X-ray fluorescence (XRF) data from a series of high-pressure–high-temperature (HPHT) wells drilled in the Shearwater Field, UK Continental Shelf (UKCS) are presented. These data comprise a total of 789 samples across a series of eight study wells. Chemical stratigraphy was utilized in conjunction with other geological data (i.e. well logs, ditch cutting descriptions and biostratigraphic analyses) to aid real-time stratigraphic placement. Systematic changes in geochemical composition were identified and used to build a chemostratigraphic zonation to aid delineation of lithostratigraphic boundaries. The application of chemical stratigraphy provided a valuable source of data, particularly through critical ‘drill-in-liner’ sections that are devoid of conventional logging while drilling (LWD) data. The identification of key geochemical zones and provision of a synthetic gamma-ray (Synth GR) profile were utilized in the placement of key casing points and identification of challenging top reservoir picks (Fulmar Formation). These data also served as a backup during LWD tool failure resulting from excessive temperatures. The successive addition of geochemical data accumulated with each well-site exercise permitted continued refinement of the zonation framework, with derived Synth GR profiles exhibiting an extremely close relationship with subsequent wireline logs. Chemical stratigraphic data are shown to be robust and repeatable within the Shearwater Field, enabling close stratigraphic control through critical sections, whilst also providing a low-cost backup in the event of conventional logging tool failures.
期刊介绍:
Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE).
Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership.
Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.