NEURAL STEM CELLS AND ARMED DERIVATIVES: FATE AND THERAPEUTIC POTENTIAL IN THE BRAIN

K. Shah
{"title":"NEURAL STEM CELLS AND ARMED DERIVATIVES: FATE AND THERAPEUTIC POTENTIAL IN THE BRAIN","authors":"K. Shah","doi":"10.1142/S1568558607000071","DOIUrl":null,"url":null,"abstract":"The ability of neural stem cells (NSCs) to home to diseased areas of the brain and their capacity to differentiate into all neural phenotypes provides a powerful tool for the treatment of both diffuse and localized neurologic/oncogenic disorders. NSCs are the most immature neural precursor cells in the nervous system and are defined by their ability to self-renew by symmetric division as well as to give rise to more mature progenitors of all neural lineages by asymmetric division. A full understanding of the molecular mechanisms regulating their migratory properties and their choice between various differentiation programs is essential if these cells are to be used for therapeutic applications. This review focuses on summarizing the factors and signaling molecules that are involved in migration and differentiation of neural stem cells and also gives an insight into therapeutic potential of these cells with an emphasis on glioma therapy.","PeriodicalId":93646,"journal":{"name":"Gene therapy and regulation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1568558607000071","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene therapy and regulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1568558607000071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The ability of neural stem cells (NSCs) to home to diseased areas of the brain and their capacity to differentiate into all neural phenotypes provides a powerful tool for the treatment of both diffuse and localized neurologic/oncogenic disorders. NSCs are the most immature neural precursor cells in the nervous system and are defined by their ability to self-renew by symmetric division as well as to give rise to more mature progenitors of all neural lineages by asymmetric division. A full understanding of the molecular mechanisms regulating their migratory properties and their choice between various differentiation programs is essential if these cells are to be used for therapeutic applications. This review focuses on summarizing the factors and signaling molecules that are involved in migration and differentiation of neural stem cells and also gives an insight into therapeutic potential of these cells with an emphasis on glioma therapy.
神经干细胞和武装衍生物:大脑的命运和治疗潜力
神经干细胞(NSCs)转移到大脑病变区域的能力及其分化为所有神经表型的能力为治疗弥漫性和局域性神经系统/致癌疾病提供了强有力的工具。NSCs是神经系统中最不成熟的神经前体细胞,具有通过对称分裂自我更新以及通过不对称分裂产生更成熟的所有神经谱系祖细胞的能力。如果这些细胞要用于治疗,充分了解调节其迁移特性的分子机制以及它们在各种分化程序之间的选择是必不可少的。本文综述了神经干细胞迁移和分化的相关因素和信号分子,并对神经干细胞在胶质瘤治疗中的应用前景进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信