{"title":"EFFICIENT DNA MOTIF DISCOVERY USING MODIFIED GENETIC ALGORITHM","authors":"E. A. Daoud","doi":"10.1142/S146902681350017X","DOIUrl":null,"url":null,"abstract":"In this study, a new genetic algorithm was developed to discover the best motifs in a set of DNA sequences. The main steps were: finding the potential positions in each sequence by using few voters (1–5 sequences), constructing the chromosomes from the potential positions, evaluating the fitness for each gene (position) and for each chromosome, calculating the new random distribution, and using the new distribution to generate the next generation. To verify the effectiveness of the proposed algorithm, several real and artificial datasets were used; the results are compared to the standard genetic algorithm, and Gibbs, MEME, and consensus algorithms. Although all the algorithms have low correlation with the correct motifs, the new algorithm exhibits higher accuracy, without sacrificing implementation time.","PeriodicalId":45994,"journal":{"name":"International Journal of Computational Intelligence and Applications","volume":"12 1","pages":"1350017"},"PeriodicalIF":0.8000,"publicationDate":"2013-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S146902681350017X","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Intelligence and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S146902681350017X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
In this study, a new genetic algorithm was developed to discover the best motifs in a set of DNA sequences. The main steps were: finding the potential positions in each sequence by using few voters (1–5 sequences), constructing the chromosomes from the potential positions, evaluating the fitness for each gene (position) and for each chromosome, calculating the new random distribution, and using the new distribution to generate the next generation. To verify the effectiveness of the proposed algorithm, several real and artificial datasets were used; the results are compared to the standard genetic algorithm, and Gibbs, MEME, and consensus algorithms. Although all the algorithms have low correlation with the correct motifs, the new algorithm exhibits higher accuracy, without sacrificing implementation time.
期刊介绍:
The International Journal of Computational Intelligence and Applications, IJCIA, is a refereed journal dedicated to the theory and applications of computational intelligence (artificial neural networks, fuzzy systems, evolutionary computation and hybrid systems). The main goal of this journal is to provide the scientific community and industry with a vehicle whereby ideas using two or more conventional and computational intelligence based techniques could be discussed. The IJCIA welcomes original works in areas such as neural networks, fuzzy logic, evolutionary computation, pattern recognition, hybrid intelligent systems, symbolic machine learning, statistical models, image/audio/video compression and retrieval.