{"title":"fRMSDPred: predicting local RMSD between structural fragments using sequence information.","authors":"H. Rangwala, G. Karypis","doi":"10.1142/9781860948732_0032","DOIUrl":null,"url":null,"abstract":"The effectiveness of comparative modeling approaches for protein structure prediction can be substantially improved by incorporating predicted structural information in the initial sequence-structure alignment. Motivated by the approaches used to align protein structures, this paper focuses on developing machine learning approaches for estimating the RMSD value of a pair of protein fragments. These estimated fragment-level RMSD values can be used to construct the alignment, assess the quality of an alignment, and identify high-quality alignment segments. We present algorithms to solve this fragment-level RMSD prediction problem using a supervised learning framework based on support vector regression and classification that incorporates protein profiles, predicted secondary structure, effective information encoding schemes, and novel second-order pairwise exponential kernel functions. Our comprehensive empirical study shows superior results compared to the profile-to-profile scoring schemes.","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":"141 1","pages":"311-22"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860948732_0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
The effectiveness of comparative modeling approaches for protein structure prediction can be substantially improved by incorporating predicted structural information in the initial sequence-structure alignment. Motivated by the approaches used to align protein structures, this paper focuses on developing machine learning approaches for estimating the RMSD value of a pair of protein fragments. These estimated fragment-level RMSD values can be used to construct the alignment, assess the quality of an alignment, and identify high-quality alignment segments. We present algorithms to solve this fragment-level RMSD prediction problem using a supervised learning framework based on support vector regression and classification that incorporates protein profiles, predicted secondary structure, effective information encoding schemes, and novel second-order pairwise exponential kernel functions. Our comprehensive empirical study shows superior results compared to the profile-to-profile scoring schemes.