Graph wavelet alignment kernels for drug virtual screening.

Aaron M. Smalter, Jun Huan, G. Lushington
{"title":"Graph wavelet alignment kernels for drug virtual screening.","authors":"Aaron M. Smalter, Jun Huan, G. Lushington","doi":"10.1142/9781848162648_0029","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a novel graph classification algorithm and demonstrate its efficacy in drug design. In our method, we use graphs to model chemical structures and apply a wavelet analysis of graphs to create features capturing graph local topology. We design a novel graph kernel function to utilize the created feature to build predictive models for chemicals. We call the new graph kernel a graph wavelet-alignment kernel. We have evaluated the efficacy of the wavelet-alignment kernel using a set of chemical structure-activity prediction benchmarks. Our results indicate that the use of the kernel function yields performance profiles comparable to, and sometimes exceeding that of the existing state-of-the-art chemical classification approaches. In addition, our results also show that the use of wavelet functions significantly decreases the computational costs for graph kernel computation with more than 10 fold speed up.","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":"7 1","pages":"327-38"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848162648_0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we introduce a novel graph classification algorithm and demonstrate its efficacy in drug design. In our method, we use graphs to model chemical structures and apply a wavelet analysis of graphs to create features capturing graph local topology. We design a novel graph kernel function to utilize the created feature to build predictive models for chemicals. We call the new graph kernel a graph wavelet-alignment kernel. We have evaluated the efficacy of the wavelet-alignment kernel using a set of chemical structure-activity prediction benchmarks. Our results indicate that the use of the kernel function yields performance profiles comparable to, and sometimes exceeding that of the existing state-of-the-art chemical classification approaches. In addition, our results also show that the use of wavelet functions significantly decreases the computational costs for graph kernel computation with more than 10 fold speed up.
用于药物虚拟筛选的图小波对齐核。
本文介绍了一种新的图分类算法,并论证了其在药物设计中的有效性。在我们的方法中,我们使用图来模拟化学结构,并应用图的小波分析来创建捕获图局部拓扑的特征。我们设计了一个新的图核函数,利用所创建的特征来构建化学品的预测模型。我们称这种新的图核为图小波对齐核。我们使用一组化学结构-活性预测基准评估了小波对准核的有效性。我们的结果表明,使用核函数产生的性能概况与现有的最先进的化学分类方法相当,有时甚至超过。此外,我们的结果还表明,小波函数的使用显著降低了图核计算的计算成本,速度提高了10倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信