Modified proximal symmetric ADMMs for multi-block separable convex optimization with linear constraints

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yuan Shen, Yannian Zuo, Liming Sun, Xiayang Zhang
{"title":"Modified proximal symmetric ADMMs for multi-block separable convex optimization with linear constraints","authors":"Yuan Shen, Yannian Zuo, Liming Sun, Xiayang Zhang","doi":"10.1142/s0219530521500160","DOIUrl":null,"url":null,"abstract":"We consider the linearly constrained separable convex optimization problem whose objective function is separable with respect to [Formula: see text] blocks of variables. A bunch of methods have been proposed and extensively studied in the past decade. Specifically, a modified strictly contractive Peaceman–Rachford splitting method (SC-PRCM) [S. H. Jiang and M. Li, A modified strictly contractive Peaceman–Rachford splitting method for multi-block separable convex programming, J. Ind. Manag. Optim. 14(1) (2018) 397-412] has been well studied in the literature for the special case of [Formula: see text]. Based on the modified SC-PRCM, we present modified proximal symmetric ADMMs (MPSADMMs) to solve the multi-block problem. In MPSADMMs, all subproblems but the first one are attached with a simple proximal term, and the multipliers are updated twice. At the end of each iteration, the output is corrected via a simple correction step. Without stringent assumptions, we establish the global convergence result and the [Formula: see text] convergence rate in the ergodic sense for the new algorithms. Preliminary numerical results show that our proposed algorithms are effective for solving the linearly constrained quadratic programming and the robust principal component analysis problems.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530521500160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the linearly constrained separable convex optimization problem whose objective function is separable with respect to [Formula: see text] blocks of variables. A bunch of methods have been proposed and extensively studied in the past decade. Specifically, a modified strictly contractive Peaceman–Rachford splitting method (SC-PRCM) [S. H. Jiang and M. Li, A modified strictly contractive Peaceman–Rachford splitting method for multi-block separable convex programming, J. Ind. Manag. Optim. 14(1) (2018) 397-412] has been well studied in the literature for the special case of [Formula: see text]. Based on the modified SC-PRCM, we present modified proximal symmetric ADMMs (MPSADMMs) to solve the multi-block problem. In MPSADMMs, all subproblems but the first one are attached with a simple proximal term, and the multipliers are updated twice. At the end of each iteration, the output is corrected via a simple correction step. Without stringent assumptions, we establish the global convergence result and the [Formula: see text] convergence rate in the ergodic sense for the new algorithms. Preliminary numerical results show that our proposed algorithms are effective for solving the linearly constrained quadratic programming and the robust principal component analysis problems.
线性约束下多块可分凸优化的改进近端对称admm
考虑目标函数相对于[公式:见文]块变量可分离的线性约束可分离凸优化问题。在过去的十年里,人们提出了许多方法并进行了广泛的研究。具体而言,一种改进的严格收缩Peaceman-Rachford分裂方法(SC-PRCM) [S。蒋宏,李敏,一种改进的严格压缩的Peaceman-Rachford分裂方法。Optim. 14(1)(2018) 397-412]对于[公式:见文本]的特殊情况,文献已经进行了很好的研究。在改进的SC-PRCM的基础上,我们提出了改进的近端对称admm (mpsadmm)来解决多块问题。在mpsadmm中,除第一个子问题外,所有子问题都附加一个简单的近邻项,并且乘子更新两次。在每次迭代结束时,通过一个简单的校正步骤对输出进行校正。在没有严格假设的情况下,我们建立了新算法的全局收敛结果和遍历意义上的收敛速率[公式:见文]。初步数值结果表明,本文提出的算法对于求解线性约束二次规划和鲁棒主成分分析问题是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信