{"title":"The Genesis of Simulation in Dynamics: Pursuing the Fermi-Pasta-Ulam Problem","authors":"T. Weissert","doi":"10.1119/1.1517598","DOIUrl":null,"url":null,"abstract":"I: History.- 1. The FPU Model and Simulation: \"A Little Discovery\".- 1.1. Development.- 1.2. Dynamics to Statistical Mechanics.- 1.3. Surfaces of Constraint.- 1.4. Global Versus Local Analysis.- 1.5. Simulation.- 1.6. Loading the Nonlinear String.- 1.7. Modal Representation.- 1.8. Model Considerations.- 1.9. Results.- 1.10. Discussion Post Hoc.- 2. The FPU Research Program: Echoes on a String.- 2.1. The Threads of a Research Program.- 2.2. The Nonlinear Discrete Lattice.- 2.3. Ford, 1961.- 2.4. Jackson, 1963.- 2.5. Ford and Waters, 1963.- 2.6. The Continuous String.- 2.7. In the Continuous Limit.- 2.8. Discreteness as Viscosity.- 2.9. The First Soliton Paper.- 3. The Kolmogorov-Arnold-Moser Theorem: \"Here Comes the Surprise\".- 3.1. A Brief History of Dynamics.- 3.2. The Fundamental Problem of Dynamics.- 3.3. The Small Divisors Problem.- 3.4. Poincare to Kolmogorov.- 3.5. The Conjecture.- 3.6. Beyond the Blaze.- 3.7. The Henon and Heiles Simulation, 1964.- 4. Research Threads Come Together: Harmonic Convergence.- 4.1. The Story Continues.- 4.2. Izrailev and Chirikov, 1966.- 4.3. Zabusky and Deem, 1967.- 4.4. Walker and Ford, 1969: Physical Review.- 4.5. Ford and Lunsford, 1970.- 4.6. Lunsford and Ford, 1972.- 4.7. The Toda Lattice Is Integrable.- II: Philosophy.- 5. Steps to an Epistemology of Simulation.- 5.1. Introduction.- 5.2. Hierarchy of Modeling.- 5.3. Historical Significance.- 5.4. Experiment.- 5.5. Epistemology.- 5.6. Preconceptions.- 5.7. Strategies for Belief and Pursuit.- 5.8. Case Study I: Fermi-Pasta-Ulam.- 5.9. Case Study II: Henon and Heiles.- 5.10. Methodology.- 5.11. Irreversibility.- 5.12. Proof.- 5.13. Proof and Simulation.- Append.- A. Hamiltonian Dynamics: Language of Abstraction.- A.1. Topology and Phase-Space Trajectories.- A.2. Canonical Transformations.- A.3. Transforming the Unperturbed String.- A.4. Cyclic Coordinates.- A.5. Liouville Integrability.- A.6. The Action-Angle Variables.- A.7. Dynamics on a Torus.- A.8. Commensurability: Two Types of Motion.- A.9. Digital Representation.- A.10.Physical Reality and the Continuum.- A.11.Perturbing the String.- References.","PeriodicalId":7589,"journal":{"name":"American Journal of Physics","volume":"70 1","pages":"1270-1271"},"PeriodicalIF":0.8000,"publicationDate":"1999-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1119/1.1517598","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1119/1.1517598","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 80
Abstract
I: History.- 1. The FPU Model and Simulation: "A Little Discovery".- 1.1. Development.- 1.2. Dynamics to Statistical Mechanics.- 1.3. Surfaces of Constraint.- 1.4. Global Versus Local Analysis.- 1.5. Simulation.- 1.6. Loading the Nonlinear String.- 1.7. Modal Representation.- 1.8. Model Considerations.- 1.9. Results.- 1.10. Discussion Post Hoc.- 2. The FPU Research Program: Echoes on a String.- 2.1. The Threads of a Research Program.- 2.2. The Nonlinear Discrete Lattice.- 2.3. Ford, 1961.- 2.4. Jackson, 1963.- 2.5. Ford and Waters, 1963.- 2.6. The Continuous String.- 2.7. In the Continuous Limit.- 2.8. Discreteness as Viscosity.- 2.9. The First Soliton Paper.- 3. The Kolmogorov-Arnold-Moser Theorem: "Here Comes the Surprise".- 3.1. A Brief History of Dynamics.- 3.2. The Fundamental Problem of Dynamics.- 3.3. The Small Divisors Problem.- 3.4. Poincare to Kolmogorov.- 3.5. The Conjecture.- 3.6. Beyond the Blaze.- 3.7. The Henon and Heiles Simulation, 1964.- 4. Research Threads Come Together: Harmonic Convergence.- 4.1. The Story Continues.- 4.2. Izrailev and Chirikov, 1966.- 4.3. Zabusky and Deem, 1967.- 4.4. Walker and Ford, 1969: Physical Review.- 4.5. Ford and Lunsford, 1970.- 4.6. Lunsford and Ford, 1972.- 4.7. The Toda Lattice Is Integrable.- II: Philosophy.- 5. Steps to an Epistemology of Simulation.- 5.1. Introduction.- 5.2. Hierarchy of Modeling.- 5.3. Historical Significance.- 5.4. Experiment.- 5.5. Epistemology.- 5.6. Preconceptions.- 5.7. Strategies for Belief and Pursuit.- 5.8. Case Study I: Fermi-Pasta-Ulam.- 5.9. Case Study II: Henon and Heiles.- 5.10. Methodology.- 5.11. Irreversibility.- 5.12. Proof.- 5.13. Proof and Simulation.- Append.- A. Hamiltonian Dynamics: Language of Abstraction.- A.1. Topology and Phase-Space Trajectories.- A.2. Canonical Transformations.- A.3. Transforming the Unperturbed String.- A.4. Cyclic Coordinates.- A.5. Liouville Integrability.- A.6. The Action-Angle Variables.- A.7. Dynamics on a Torus.- A.8. Commensurability: Two Types of Motion.- A.9. Digital Representation.- A.10.Physical Reality and the Continuum.- A.11.Perturbing the String.- References.
期刊介绍:
The mission of the American Journal of Physics (AJP) is to publish articles on the educational and cultural aspects of physics that are useful, interesting, and accessible to a diverse audience of physics students, educators, and researchers. Our audience generally reads outside their specialties to broaden their understanding of physics and to expand and enhance their pedagogical toolkits at the undergraduate and graduate levels.