Overexpression of VEGF Induces Bone Formation in the Model of Transplantation of Cultured Bone Cells

Q4 Engineering
T. Uemura, Kazuya Matsumoto, H. Kojima
{"title":"Overexpression of VEGF Induces Bone Formation in the Model of Transplantation of Cultured Bone Cells","authors":"T. Uemura, Kazuya Matsumoto, H. Kojima","doi":"10.11344/NANO.6.85","DOIUrl":null,"url":null,"abstract":"85 Introduction The technique of the transplantation of cultured bone cells was firstly developed by Caplan and Bruder [1]. This technique will be useful and applicable for the patients who lost their large segments of bone by suffering bone tumor or etc. Their procedure is as follows; messenchymal stromal cells (MSCs) are isolated from bone marrow and expanded in number in culture. When sufficient number of cells are available, they are loaded into a porous ceramics scaffold and surgically inserted into the excision defect. For clinical application of this bone regeneration therapy. Yoshikawa and Ohgushi improved culture method of osteoblastic cells by introducing the culture method of Maniatopoulos [2]. Several kinds of porous ceramics scaffolds were examined for this implantation system [3-7]. For clinical usage, large size of the scaffold is necessary, however the bigger the size is necessary, the harder the invasion of blood vessel into the central area of scaffold becomes. Osteoblasts Overexpression of VEGF Induces Bone Formation in the Model of Transplantation of Cultured Bone Cells","PeriodicalId":19070,"journal":{"name":"Nano Biomedicine","volume":"6 1","pages":"85-91"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11344/NANO.6.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

85 Introduction The technique of the transplantation of cultured bone cells was firstly developed by Caplan and Bruder [1]. This technique will be useful and applicable for the patients who lost their large segments of bone by suffering bone tumor or etc. Their procedure is as follows; messenchymal stromal cells (MSCs) are isolated from bone marrow and expanded in number in culture. When sufficient number of cells are available, they are loaded into a porous ceramics scaffold and surgically inserted into the excision defect. For clinical application of this bone regeneration therapy. Yoshikawa and Ohgushi improved culture method of osteoblastic cells by introducing the culture method of Maniatopoulos [2]. Several kinds of porous ceramics scaffolds were examined for this implantation system [3-7]. For clinical usage, large size of the scaffold is necessary, however the bigger the size is necessary, the harder the invasion of blood vessel into the central area of scaffold becomes. Osteoblasts Overexpression of VEGF Induces Bone Formation in the Model of Transplantation of Cultured Bone Cells
VEGF过表达诱导培养骨细胞移植模型成骨
体外培养的骨细胞移植技术是由Caplan和Bruder率先发展起来的。该技术对因骨肿瘤或其他原因导致大面积骨缺损的患者具有重要的应用价值。其程序如下:间充质间质细胞(MSCs)是从骨髓中分离出来的,并在培养中扩增。当有足够数量的细胞可用时,它们被装入多孔陶瓷支架并通过手术插入切除的缺损。为骨再生疗法的临床应用。Yoshikawa和Ohgushi介绍了manatopoulos[2]的培养方法,改进了成骨细胞的培养方法。研究了几种多孔陶瓷支架用于该植入系统[3-7]。临床使用时,支架的尺寸必须较大,但尺寸越大,血管越难侵入支架中心区域。成骨细胞过表达VEGF诱导培养骨细胞移植模型成骨
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Biomedicine
Nano Biomedicine Engineering-Biomedical Engineering
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信